1
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
2
|
Gholamali I, Vu TT, Jo SH, Park SH, Lim KT. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2439. [PMID: 38793505 PMCID: PMC11123044 DOI: 10.3390/ma17102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This comprehensive review delves into the world of hyaluronic acid (HA) hydrogels, exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out among natural polysaccharides due to their distinct features. Their exceptional biocompatibility makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously with living cells and tissues. Furthermore, their biodegradability permits their gradual breakdown by bodily enzymes, enabling the creation of temporary frameworks for tissue engineering endeavors. Additionally, since HA is a vital component of the extracellular matrix (ECM) in numerous tissues, HA hydrogels can replicate the ECM's structure and functions. This mimicry is pivotal in tissue engineering applications by providing an ideal setting for cellular growth and maturation. Various cross-linking techniques like chemical, physical, enzymatic, and hybrid methods impact the mechanical strength, swelling capacity, and degradation speed of the hydrogels. Assessment tools such as rheological analysis, electron microscopy, spectroscopy, swelling tests, and degradation studies are employed to examine their attributes. HA-based hydrogels feature prominently in tissue engineering, drug distribution, wound recovery, ophthalmology, and cartilage mending. Crafting HA hydrogels enables the production of biomaterials with sought-after qualities, offering avenues for advancements in the realm of biomedicine.
Collapse
Affiliation(s)
- Iman Gholamali
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Registre C, Soares RDOA, Rubio KTS, Santos ODH, Carneiro SP. A Systematic Review of Drug-Carrying Nanosystems Used in the Treatment of Leishmaniasis. ACS Infect Dis 2023; 9:423-449. [PMID: 36795604 DOI: 10.1021/acsinfecdis.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Leishmaniasis is an infectious disease responsible for a huge rate of morbidity and mortality in humans. Chemotherapy consists of the use of pentavalent antimonial, amphotericin B, pentamidine, miltefosine, and paromomycin. However, these drugs are associated with some drawbacks such as high toxicity, administration by parenteral route, and most seriously the resistance of some strains of the parasite to them. Several strategies have been used to increase the therapeutic index and reduce the toxic effects of these drugs. Among them, the use of nanosystems that have great potential as a site-specific drug delivery system stands out. This review aims to compile results from studies that were carried out using first- and second-line antileishmanial drug-carrying nanosystems. The articles referred to here were published between 2011 and 2021. This study shows the promise of effective applicability of drug-carrying nanosystems in the field of antileishmanial therapeutics, with the perspective of providing better patient adherence to treatment, increased therapeutic efficacy, reduced toxicity of conventional drugs, as well as the potential to efficiently improve the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Charmante Registre
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Rodrigo D O A Soares
- Immunopathology Laboratory, Research Center in Biological Sciences/NUPEB, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Karina T S Rubio
- Toxicology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Orlando D H Santos
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Simone P Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| |
Collapse
|
4
|
Hada AM, Burduja N, Abbate M, Stagno C, Caljon G, Maes L, Micale N, Cordaro M, Scala A, Mazzaglia A, Piperno A. Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core-shell nanoarchitectures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1361-1369. [PMID: 36474926 PMCID: PMC9679597 DOI: 10.3762/bjnano.13.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Advanced nanoscale antimicrobials, originated from the combination of noble metal nanoparticles (NPs) with conventional antimicrobial drugs, are considered the next generation of antimicrobial agents. Therefore, there is an increasing demand for rapid, eco-friendly, and relatively inexpensive synthetic approaches for the preparation of nontoxic metallic nanostructures endowed with unique physicochemical properties. Recently, we have proposed a straightforward synthetic strategy that exploits the properties of polymeric β-cyclodextrin (PolyCD) to act as both the reducing and stabilizing agent to produce monodispersed and stable gold-based NPs either as monometallic (nanoG) structures or core-shell bimetallic (nanoGS) architectures with an external silver layer. Here, we describe the preparation of a supramolecular assembly between nanoGS and pentamidine, an antileishmanial drug endowed with a wide range of therapeutic properties (i.e., antimicrobial, anti-inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complementary spectroscopic techniques, such as UV-vis, ζ-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD during the reduction/stabilization of metal NPs was investigated for the first time by NMR spectroscopy.
Collapse
Affiliation(s)
- Alexandru-Milentie Hada
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania
| | - Nina Burduja
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
- National Council of Research, Institute for the Study of Nanostructured Materials (CNR-ISMN), URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Marco Abbate
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Massimiliano Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
- CNR-ITAE, Istituto di Tecnologie Avanzate per l’Energia, 98126, Messina, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonino Mazzaglia
- National Council of Research, Institute for the Study of Nanostructured Materials (CNR-ISMN), URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Stability Studies and the In Vitro Leishmanicidal Activity of Hyaluronic Acid-Based Nanoemulsion Containing Pterodon pubescens Benth. Oil. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The physicochemical and microbiological stability of a hyaluronic acid-based nanostructured topical delivery system containing P. pubescens fruit oil was evaluated, and the in vitro antileishmanial activity of the nanoemulsion against Leishmania amazonensis and the cytotoxicity on macrophages was investigated. The formulation stored at 5 ± 2 °C, compared with the formulation stored at 30 and 40 ± 2 °C, showed a higher chemical and physical stability during the period analyzed and in the accelerated physical stability study. The formulation stored at 40 °C presented a significant change in droplet diameter, polydispersity index, zeta potential, pH, active compound, and consistency index and was considered unstable. The microbiological stability of the formulations was confirmed. The leishmanicidal activity of the selected system against intracellular amastigotes was significantly superior to that observed for the free oil. However, further research is needed to explore the use of the hyaluronic acid-based nanostructured system containing P. pubescens fruit oil for the treatment of cutaneous leishmaniasis.
Collapse
|
6
|
Iqbal K, Khalid S, McElroy CA, Adnan M, Khan GM, Dar MJ. Triple-combination therapy for cutaneous leishmaniasis using detergent-free, hyaluronate-coated elastic nanovesicles. Nanomedicine (Lond) 2022; 17:1429-1447. [PMID: 36301316 DOI: 10.2217/nnm-2022-0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To develop and evaluate detergent-free, triple-drug-loaded, hyaluronate-coated elastic nanovesicles (H-ENVs) for the topical treatment of cutaneous leishmaniasis. Materials & methods: H-ENVs were developed and evaluated for vesicle size, entrapment efficiency, skin permeation and antileishmanial potential. Results: A 15.7 and 28.6% decrease in the cytotoxicity of paromomycin and amphotericin B, respectively, was observed in detergent-free ENVs compared with conventional ENVs. H-ENVs improved the efficacy of paromomycin against promastigote and amastigote models of leishmaniasis by 4- and 7.5-fold, respectively. In vivo investigation of H-ENVs demonstrated efficient topical management of cutaneous leishmaniasis. Conclusion: The results indicate the potential of H-ENVs as a safe topical treatment choice for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Kashif Iqbal
- Nanomedicine Research Group, School of Pharmacy, IBADAT International University, Islamabad, 44000, Pakistan
| | - Sidra Khalid
- Division of Pharmaceutical Evaluation and Registration, Drug Regulatory Authority of Pakistan, Islamabad, 44090, Pakistan
| | - Craig A McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43201, USA
| | - Muhammad Adnan
- Nanomedicine Research Group, School of Pharmacy, IBADAT International University, Islamabad, 44000, Pakistan
| | - Gul Majid Khan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - M Junaid Dar
- Nanomedicine Research Group, School of Pharmacy, IBADAT International University, Islamabad, 44000, Pakistan
| |
Collapse
|
7
|
Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules 2021; 26:molecules26144280. [PMID: 34299555 PMCID: PMC8305375 DOI: 10.3390/molecules26144280] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
This review covers the main aspects concerning the chemistry, the biological activity and the analytical determination of oxazolidinones, the only new class of synthetic antibiotics advanced in clinical use over the past 50 years. They are characterized by a chemical structure including the oxazolidone ring with the S configuration of substituent at C5, the acylaminomethyl group linked to C5 and the N-aryl substituent. The synthesis of oxazolidinones has gained increasing interest due to their unique mechanism of action that assures high antibiotic efficiency and low susceptibility to resistance mechanisms. Here, the main features of oxazolidinone antibiotics licensed or under development, such as Linezolid, Sutezolid, Eperezolid, Radezolid, Contezolid, Posizolid, Tedizolid, Delpazolid and TBI-223, are discussed. As they are protein synthesis inhibitors active against a wide spectrum of multidrug-resistant Gram-positive bacteria, their biological activity is carefully analyzed, together with the drug delivery systems recently developed to overcome the poor oxazolidinone water solubility. Finally, the most employed analytical techniques for oxazolidinone determination in different matrices, such as biological fluids, tissues, drugs and natural waters, are reviewed. Most are based on HPLC (High Performance Liquid Chromatography) coupled with UV-Vis or mass spectrometer detectors, but, to a lesser extent are also based on spectrofluorimetry or voltammetry.
Collapse
|
8
|
Gupta O, Pradhan T, Bhatia R, Monga V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur J Med Chem 2021; 223:113606. [PMID: 34171661 DOI: 10.1016/j.ejmech.2021.113606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease caused by various species of Leishmania parasite. Despite tremendous advancements in the therapeutic sector and drug development strategies, still the existing anti-leishmanial agents are associated with some clinical issues like drug resistance, toxicity and selectivity. Therefore, several research groups are continuously working towards the development of new therapeutic candidates to overcome these issues. Many potential heterocyclic moieties have been explored for this purpose including triazoles, chalcones, chromone, thiazoles, thiosemicarbazones, indole, quinolines, etc. It is evident from the literature that the majority of anti-leishmanial agents act by interacting with key regulators including PTR-I, DHFR, LdMetAP1, MAPK, 14 α-demethylase and pteridine reductase-I, etc. Also, these tend to induce the production of ROS which causes damage to parasites. In the present compilation, authors have summarized various significant synthetic procedures for anti-leishmanial agents reported in recent years. A brief description of the pharmacological potentials of synthesized compounds along with important aspects related to structural activity relationship has been provided. Important docking outcomes highlighting the possible mode of interaction for the reported compounds have also been included. This review would be helpful to the scientific community to design newer strategies and also to develop novel therapeutic candidates against leishmaniasis.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
9
|
Kordestani N, Rudbari HA, Fateminia Z, Caljon G, Maes L, Mineo PG, Cordaro A, Mazzaglia A, Scala A, Micale N. Antimicrobial and antiprotozoal activities of silver coordination polymers derived from the asymmetric halogenated Schiff base ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH) University of Antwerp Antwerp Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH) University of Antwerp Antwerp Belgium
| | - Placido G. Mineo
- Department of Chemical Sciences University of Catania Catania Italy
- Institute of Polymers, Composites and Biomaterials (CNR‐IPCB) Catania Italy
| | - Annalaura Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- CNR‐ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Antonino Mazzaglia
- CNR‐ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
10
|
Liénard R, Montesi M, Panseri S, Dozio SM, Vento F, Mineo PG, Piperno A, De Winter J, Coulembier O, Scala A. Design of naturally inspired jellyfish-shaped cyclopolylactides to manage osteosarcoma cancer stem cells fate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111291. [PMID: 32919652 DOI: 10.1016/j.msec.2020.111291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/23/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
Abstract
We report the synthesis, characterization and biological profile of new bis-triazoled cyclopolylactides (c-PLA, c-PLA-FA, c-PLA-Rhod) obtained by an optimized combination of ROP and click chemistry reactions. Cyclo-PLA having a number average molecular weight of 6000 g mol-1 and a polydispersity index of 1.52 was synthetized by click ring-closure of well-defined α,ω-heterodifunctional linear precursors, followed by quaternarization of N3-triazole nodes, and subsequent CuAAC with azido-folate and azido-rhodamine yielding jellyfish-shaped c-PLA-FA and c-PLA-Rhod. Salinomycin (Sal) was loaded into jellyfish-shaped c-PLA-FA and c-PLA-Rhod nanoparticles (NPs) by nanoprecipitation, with a good encapsulation efficiency (79% and 84%, respectively) and loading content (7.1% and 7.6%, respectively). The biological studies focused on their antiproliferative effects on osteosarcoma bulk MG63 and cancer stem cells (CSCs). The cycloPLA-based NPs, with a size ranging between 125 and 385 nm, killed CSCs and MG63, with a higher efficacy on CSCs; they (unloaded or Sal-loaded) evoked on CSCs a cellular response similar to the payload, with a higher effect than the free Sal. Internalization studies indicated a fast cellular uptake (within 2 h) and sarcospheres remained fluorescent till 72 h. To the best of our knowledge, this is the first study reporting anti-CSCs properties of cycloPLA with jellyfish architecture and we believe could contribute to the development of effective strategies for osteosarcoma targeting.
Collapse
Affiliation(s)
- Romain Liénard
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Place du Parc 23, 7000 Mons, Belgium; Interdisciplinary Center for Mass Spectrometry (CISMa), Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Monica Montesi
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Silvia Panseri
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Samuele Maria Dozio
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Fabiana Vento
- Department of Chemical Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy
| | - Placido G Mineo
- Department of Chemical Sciences, University of Catania, Viale A. Doria, 95125 Catania, Italy; CNR-IPCB Institute of Polymers, Composites and Biomaterials, Via P. Gaifami 18, I-95126 Catania, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Julien De Winter
- Interdisciplinary Center for Mass Spectrometry (CISMa), Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
11
|
Mineo PG, Foti C, Vento F, Montesi M, Panseri S, Piperno A, Scala A. Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells. Anal Bioanal Chem 2020; 412:4681-4690. [DOI: 10.1007/s00216-020-02721-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
|
12
|
Valle IV, Machado ME, Araújo CDCB, da Cunha-Junior EF, da Silva Pacheco J, Torres-Santos EC, da Silva LCRP, Cabral LM, do Carmo FA, Sathler PC. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. NANOTECHNOLOGY 2019; 30:455102. [PMID: 31365912 DOI: 10.1088/1361-6528/ab373e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Leishmaniasis is a group of diseases caused by a protozoa parasite from one of over 20 Leishmania species. Depending on the tissues infected, these diseases are classified as cutaneous, mucocutaneous and visceral leishmaniasis. For the treatment of leishmaniasis refractory to antimony-based drugs, pentamidine (PTM) is a molecule of great interest. However, PTM displays poor bioavailability through oral routes due to its two strongly basic amidine moieties, which restricts its administration by a parenteral route and limits its clinical use. Among various approaches, nanotechnology-based drug delivery systems (nano-DDS) have potential to overcome the challenges associated with PTM oral administration. Here, we present the development of PTM-loaded PLGA nanoparticles (NPs) with a focus on the characterization of their physicochemical properties and potential application as an oral treatment of leishmaniasis. NPs were prepared by a double emulsion methodology. The physicochemical properties were characterized through the mean particle size, polydispersity index (PdI), zeta potential, entrapment efficiency, yield process, drug loading, morphology, in vitro drug release and in vivo pharmacological activity. The PTM-loaded PLGA NPs presented with a size of 263 ± 5 nm (PdI = 0.17 ± 0.02), an almost neutral charge (-3.2 ± 0.8 mV) and an efficiency for PTM entrapment of 91.5%. The release profile, based on PTM dissolution, could be best described by a zero-order model, followed by a drug diffusion profile that fit to the Higuchi model. In addition, in vivo assay showed the efficacy of orally given PTM-loaded PLGA NPs (0.4 mg kg-1) in infected BALB/c mice, with significant reduction of organ weight and parasite load in spleen (p-value < 0.05). This work successfully reported the oral use of PTM-loaded NPs, with a high potential for the treatment of visceral leishmaniasis, opening a new perspective to utilization of this drug in clinical practice.
Collapse
Affiliation(s)
- Isabela Viol Valle
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carton F, Chevalier Y, Nicoletti L, Tarnowska M, Stella B, Arpicco S, Malatesta M, Jordheim LP, Briançon S, Lollo G. Rationally designed hyaluronic acid-based nano-complexes for pentamidine delivery. Int J Pharm 2019; 568:118526. [DOI: 10.1016/j.ijpharm.2019.118526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/04/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
|
14
|
Peretti E, Miletto I, Stella B, Rocco F, Berlier G, Arpicco S. Strategies to Obtain Encapsulation and Controlled Release of Pentamidine in Mesoporous Silica Nanoparticles. Pharmaceutics 2018; 10:pharmaceutics10040195. [PMID: 30347763 PMCID: PMC6320796 DOI: 10.3390/pharmaceutics10040195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Pentamidine (PTM), an antiprotozoal agent used in clinics as pentamidine isethionate salt (PTM-S), recently showed high potential also for the treatment of cancer and myotonic dystrophy type I. However, a severe limit to the systemic administration of PTM is represented by its nephrotoxicity, leading to the need for a system able to achieve a controlled release of the drug. In this study, mesoporous silica nanoparticles (MSNs) were employed for the first time to encapsulate PTM. PTM-S was first used for loading experiments into bare (MSN-OH) and aminopropyl, cyanopropyl and carboxypropyl-functionalized MSNs (MSN-NH2, MSN-CN and MSN-COOH respectively) but it was not adequately loaded in any MSNs. The free base of PTM (PTM-B) was then obtained from PTM-S and successfully loaded into MSNs. Specifically, MSN-COOH exhibited the highest loading capacity. In vitro evaluation of PTM-B kinetic release from the different MSNs was carried out. An influence of the functional groups in slowing the release of the drug, when compared to bare MSNs was observed. Altogether, these results demonstrate that MSN-COOH could be a promising system to achieve a controlled release of PTM.
Collapse
Affiliation(s)
- Enrico Peretti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy.
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino, Italy.
| | - Ivana Miletto
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", 15121 Alessandria, Italy.
| | - Barbara Stella
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy.
| | - Flavio Rocco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy.
| | - Gloria Berlier
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, 10125 Torino, Italy.
| | - Silvia Arpicco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy.
| |
Collapse
|
15
|
Exploring the entrapment of antiviral agents in hyaluronic acid-cyclodextrin conjugates. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0829-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Scala A, Piperno A, Micale N, Mineo PG, Abbadessa A, Risoluti R, Castelli G, Bruno F, Vitale F, Cascio A, Grassi G. "Click" on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates. J Biomed Mater Res B Appl Biomater 2017; 106:2778-2785. [PMID: 29219244 DOI: 10.1002/jbm.b.34058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Accepted: 11/18/2017] [Indexed: 12/26/2022]
Abstract
Pentamidine (Pent), an antiparasitic drug used for the treatment of visceral leishmaniasis, has been modified with terminal azide groups and conjugated to two different polymer backbones (PLGA-PEG [PP] copolymer and hyaluronic acid [HA]) armed with alkyne end-groups. The conjugation has been performed by Copper Catalyzed Azido Alkyne Cycloaddition (CuAAC) using CuSO4 /sodium ascorbate as metal source. The novel PP-Pent and HA-Pent bioconjugates are proposed, respectively, as non-targeted and targeted drug delivery systems against Leishmania infections. Moreover, Pent has been encapsulated into PP nanoparticles by the oil-in-water emulsion method, with the aim to compare the biological activity of the bioconjugates with that of the classical drug-loaded delivery system that physically entraps the therapeutic agent. Biological assays against Leishmania infantum amastigote-infected macrophages and primary macrophages revealed that Pent, either covalently conjugated with polymers or loaded into polymeric nanoparticles, turned out to be more potent and less toxic than the free Pent. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2778-2785, 2018.
Collapse
Affiliation(s)
- Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno d'Alcontres 31, 98166, Messina, Italy.,INSTM - Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (UdR Catania e Messina), Italy
| | - Nicola Micale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Placido G Mineo
- INSTM - Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (UdR Catania e Messina), Italy.,Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy.,CNR-IPCB Istituto per i Polimeri, Compositi e Biomateriali; Via P. Gaifami 18, I-95126, Catania, Italy
| | - Antonio Abbadessa
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Roberta Risoluti
- Dipartimento di Chimica, Università La Sapienza Roma, P.le A. Moro 5, 00185, Roma, Italy
| | - Germano Castelli
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129, Palermo, Italy
| | - Federica Bruno
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129, Palermo, Italy
| | - Fabrizio Vitale
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129, Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Section of Infectious Diseases, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Giovanni Grassi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno d'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
17
|
Scala A, Rescifina A, Micale N, Piperno A, Schirmeister T, Maes L, Grassi G. Ensemble-based ADME-Tox profiling and virtual screening for the discovery of new inhibitors of the Leishmania mexicana cysteine protease CPB2.8ΔCTE. Chem Biol Drug Des 2017; 91:597-604. [PMID: 29045053 DOI: 10.1111/cbdd.13124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022]
Abstract
In an effort to identify novel molecular warheads able to inhibit Leishmania mexicana cysteine protease CPB2.8ΔCTE, fused benzo[b]thiophenes and β,β'-triketones emerged as covalent inhibitors binding the active site cysteine residue. Enzymatic screening showed a moderate-to-excellent activity (12%-90% inhibition of the target enzyme at 20 μm). The most promising compounds were selected for further profiling including in vitro cell-based assays and docking studies. Computational data suggest that benzo[b]thiophenes act immediately as non-covalent inhibitors and then as irreversible covalent inhibitors, whereas a reversible covalent mechanism emerged for the 1,3,3'-triketones with a Y-topology. Based on the predicted physicochemical and ADME-Tox properties, compound 2b has been identified as a new drug-like, non-mutagen, non-carcinogen, and non-neurotoxic lead candidate.
Collapse
Affiliation(s)
- Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Catania, Italy
| | - Nicola Micale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Giovanni Grassi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
18
|
Dichiara M, Marrazzo A, Prezzavento O, Collina S, Rescifina A, Amata E. Repurposing of Human Kinase Inhibitors in Neglected Protozoan Diseases. ChemMedChem 2017; 12:1235-1253. [PMID: 28590590 DOI: 10.1002/cmdc.201700259] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Indexed: 12/11/2022]
Abstract
Human African trypanosomiasis (HAT), Chagas disease, and leishmaniasis belong to a group of infectious diseases known as neglected tropical diseases and are induced by infection with protozoan parasites named trypanosomatids. Drugs in current use have several limitations, and therefore new candidate drugs are required. The majority of current therapeutic trypanosomatid targets are enzymes or cell-surface receptors. Among these, eukaryotic protein kinases are a major group of protein targets whose modulation may be beneficial for the treatment of neglected tropical protozoan diseases. This review summarizes the finding of new hit compounds for neglected tropical protozoan diseases, by repurposing known human kinase inhibitors on trypanosomatids. Kinase inhibitors are grouped by human kinase family and discussed according to the screening (target-based or phenotypic) reported for these compounds on trypanosomatids. This collection aims to provide insight into repurposed human kinase inhibitors and their importance in the development of new chemical entities with potential beneficial effects on the diseases caused by trypanosomatids.
Collapse
Affiliation(s)
- Maria Dichiara
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100, Pavia, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| |
Collapse
|
19
|
Ikemoto H, Lingasamy P, Anton Willmore AM, Hunt H, Kurm K, Tammik O, Scodeller P, Simón-Gracia L, Kotamraju VR, Lowy AM, Sugahara KN, Teesalu T. Hyaluronan-binding peptide for targeting peritoneal carcinomatosis. Tumour Biol 2017; 39:1010428317701628. [PMID: 28468593 PMCID: PMC5697747 DOI: 10.1177/1010428317701628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Peritoneal carcinomatosis results from dissemination of solid tumors in the peritoneal cavity, and is a common site of metastasis in patients with carcinomas of gastrointestinal or gynecological origin. Peritoneal carcinomatosis treatment is challenging as poorly vascularized, disseminated peritoneal micro-tumors are shielded from systemic anticancer drugs and drive tumor regrowth. Here, we describe the identification and validation of a tumor homing peptide CKRDLSRRC (IP3), which upon intraperitoneal administration delivers payloads to peritoneal metastases. IP3 peptide was identified by in vivo phage display on a mouse model of peritoneal carcinomatosis of gastric origin (MKN-45P), using high-throughput sequencing of the peptide-encoding region of phage genome as a readout. The IP3 peptide contains a hyaluronan-binding motif, and fluorescein-labeled IP3 peptide bound to immobilized hyaluronan in vitro. After intraperitoneal administration in mice bearing peritoneal metastases of gastric and colon origin, IP3 peptide homed robustly to macrophage-rich regions in peritoneal tumors, including poorly vascularized micro-tumors. Finally, we show that IP3 functionalization conferred silver nanoparticles the ability to home to peritoneal tumors of gastric and colonic origin, suggesting that it could facilitate targeted delivery of nanoscale payloads to peritoneal tumors. Collectively, our study suggests that the IP3 peptide has potential applications for targeting drugs, nanoparticles, and imaging agents to peritoneal tumors.
Collapse
Affiliation(s)
- Hideki Ikemoto
- 1 Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Prakash Lingasamy
- 1 Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anne-Mari Anton Willmore
- 1 Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hedi Hunt
- 1 Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kaarel Kurm
- 1 Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Olav Tammik
- 2 Department of Surgical Oncology, Tartu University Hospital, Tartu, Estonia
| | - Pablo Scodeller
- 1 Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Lorena Simón-Gracia
- 1 Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - Andrew M Lowy
- 4 Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Kazuki N Sugahara
- 3 Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,5 Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Tambet Teesalu
- 1 Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,3 Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,6 Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|