1
|
Cook A, Dearborn MA, Anderberg TM, Vaidya K, Jureller JE, Esser-Kahn AP, Squires AH. Polymer Patterning by Laser-Induced Multipoint Initiation of Frontal Polymerization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17973-17980. [PMID: 38418392 PMCID: PMC11009908 DOI: 10.1021/acsami.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Frontal polymerization (FP) is an approach for thermosetting plastics at a lower energy cost than an autoclave. The potential to generate simultaneous propagation of multiple polymerization fronts has been discussed as an exciting possibility. However, FP initiated at more than two points simultaneously has not been demonstrated. Multipoint initiation could enable both large-scale material fabrication and unique pattern generation. Here, the authors present laser-patterned photothermal heating as a method for simultaneous initiation of FP at multiple locations in a 2-D sample. Carbon black particles are mixed into liquid resin (dicyclopentadiene) to enhance absorption of light from a Ti:sapphire laser (800 nm) focused on a sample. The laser is time-shared by rapid steering among initiation points, generating polymerization using up to seven simultaneous points of initiation. This process results in the formation of both symmetric and asymmetric seam patterns resulting from the collision of fronts. The authors also present and validate a theoretical framework for predicting the seam patterns formed by front collisions. This framework allows the design of novel patterns via an inverse solution for determining the initiation points required to form a desired pattern. Future applications of this approach could enable rapid, energy-efficient manufacturing of novel composite-like patterned materials.
Collapse
Affiliation(s)
- Andrés
L. Cook
- Department
of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Mason A. Dearborn
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Trevor M. Anderberg
- Department
of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Kavya Vaidya
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Justin E. Jureller
- James
Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, University of
Chicago, Chicago, Illinois 60637, United States
| | - Allison H. Squires
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, University of
Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Suslick BA, Hemmer J, Groce BR, Stawiasz KJ, Geubelle PH, Malucelli G, Mariani A, Moore JS, Pojman JA, Sottos NR. Frontal Polymerizations: From Chemical Perspectives to Macroscopic Properties and Applications. Chem Rev 2023; 123:3237-3298. [PMID: 36827528 PMCID: PMC10037337 DOI: 10.1021/acs.chemrev.2c00686] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.
Collapse
Affiliation(s)
- Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julie Hemmer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brecklyn R Groce
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Katherine J Stawiasz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Philippe H Geubelle
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, 15121 Alessandria, Italy
| | - Alberto Mariani
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- National Interuniversity Consortium of Materials Science and Technology, 50121 Firenze, Italy
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Ahumada G, Borkowska M. Fluorescent Polymers Conspectus. Polymers (Basel) 2022; 14:1118. [PMID: 35335449 PMCID: PMC8955759 DOI: 10.3390/polym14061118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The development of luminescent materials is critical to humankind. The Nobel Prizes awarded in 2008 and 2010 for research on the development of green fluorescent proteins and super-resolved fluorescence imaging are proof of this (2014). Fluorescent probes, smart polymer machines, fluorescent chemosensors, fluorescence molecular thermometers, fluorescent imaging, drug delivery carriers, and other applications make fluorescent polymers (FPs) exciting materials. Two major branches can be distinguished in the field: (1) macromolecules with fluorophores in their structure and (2) aggregation-induced emission (AIE) FPs. In the first, the polymer (which may be conjugated) contains a fluorophore, conferring photoluminescent properties to the final material, offering tunable structures, robust mechanical properties, and low detection limits in sensing applications when compared to small-molecule or inorganic luminescent materials. In the latter, AIE FPs use a novel mode of fluorescence dependent on the aggregation state. AIE FP intra- and intermolecular interactions confer synergistic effects, improving their properties and performance over small molecules aggregation-induced, emission-based fluorescent materials (AIEgens). Despite their outstanding advantages (over classic polymers) of high emission efficiency, signal amplification, good processability, and multiple functionalization, AIE polymers have received less attention. This review examines some of the most significant advances in the broad field of FPs over the last six years, concluding with a general outlook and discussion of future challenges to promote advancements in these promising materials that can serve as a springboard for future innovation in the field.
Collapse
Affiliation(s)
- Guillermo Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea;
| | | |
Collapse
|
4
|
Li Q, Shen HX, Liu C, Wang CF, Zhu L, Chen S. Advances in Frontal Polymerization Strategy: from Fundamentals to Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Abstract
This paper reviews synthetic concepts for the functionalization of various inorganic nanoparticles with a shell consisting of organic polymers and possible applications of the resulting hybrid materials. A polymer coating can make inorganic nanoparticles soluble in many solvents as individual particles and not only do low molar mass solvents become suitable, but also polymers as a solid matrix. In the case of shape anisotropic particles (e.g., rods) a spontaneous self-organization (parallel orientation) of the nanoparticles can be achieved, because of the formation of lyotropic liquid crystalline phases. They offer the possibility to orient the shape of anisotropic nanoparticles macroscopically in external electric fields. At least, such hybrid materials allow semiconducting inorganic nanoparticles to be dispersed in functional polymer matrices, like films of semiconducting polymers. Thereby, the inorganic nanoparticles can be electrically connected and addressed by the polymer matrix. This allows LEDs to be prepared with highly fluorescent inorganic nanoparticles (quantum dots) as chromophores. Recent works have aimed to further improve these fascinating light emitting materials.
Collapse
|
6
|
Bonardi AH, Dumur F, Gigmes D, Xu YY, Lalevée J. Light-Induced Thermal Decomposition of Alkoxyamines upon Infrared CO 2 Laser: Toward Spatially Controlled Polymerization of Methacrylates in Laser Write Experiments. ACS OMEGA 2020; 5:3043-3046. [PMID: 32095727 PMCID: PMC7033953 DOI: 10.1021/acsomega.9b04281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Systems combining photopolymerization and thermal polymerization have already been reported in the literature. Upon near-infrared (NIR) light exposure, this principle of polymerization is called photoinduced thermal polymerization or photothermal polymerization. Thanks to an NIR dye used as the light-to-heat convertor (called hereafter a heater), an alkoxyamine (e.g., BlocBuilder-MA) is dissociated upon NIR light irradiation, initiating the free-radical polymerization of methacrylates. In the present paper, a novel approach is presented for the first time to decompose the alkoxyamine through a direct heat generation upon mid-infrared irradiation by a CO2 laser at 10.6 μm. Compared with previous approaches, there is no additional heater used in this work, as the heat is directly generated by laser irradiation on the alkoxyamine/monomer system. The polymerization can be initiated for benchmark methacrylate monomers with spatial controllability, that is, only in the laser-irradiated area, opening the way for laser write or three-dimensional printing applications in the presence of fillers.
Collapse
Affiliation(s)
- Aude-Héloise Bonardi
- Université
de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, F-67081 Strasbourg, France
| | - Frédéric Dumur
- Aix
Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| | - Didier Gigmes
- Aix
Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| | - Yang-Yang Xu
- Université
de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, F-67081 Strasbourg, France
- College
of Chemistry and Materials Science, Anhui
Normal University, South
Jiuhua Rd. 189, 241002 Wuhu, P. R. China
| | - Jacques Lalevée
- Université
de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université
de Strasbourg, F-67081 Strasbourg, France
| |
Collapse
|
7
|
Wang FX, Li Q, Liu SS, Du XY, Wang CF, Chen S. Rapid preparation of auto-healing gels with actuating behaviour. SOFT MATTER 2019; 15:2517-2525. [PMID: 30672942 DOI: 10.1039/c8sm02419g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gels with multiple stimuli-responsive actuating behaviour have shown great potential in many applications. Nevertheless, facile approaches to rapidly preparing gel actuators are still highly needed, and obtaining gels possessing both actuating and auto-healing capabilities remains a challenge. Herein, we report the rapid preparation of gel actuators with a self-healing ability. Dual-component gels, composed of poly(BA-co-VI-co-AM) (G-1) and poly(BA-co-AA-co-AM/β-CD) (G-2) (BA = butyl acrylate, VI = N-vinyl imidazole, AM = acrylamide, AA = acrylic acid, β-CD = β-cyclodextrin), are prepared within 10 minutes (min) via biphase frontal polymerization (FP). Both G-1 and G-2 gels show excellent intrinsic self-healing properties based on hydrogen bonds, with healing efficiencies of 91% and 97%, respectively; self-healing between G-1 and G-2 also occurs due to hydrogen bonding and host-guest interactions. Moreover, dual-component gels, in terms of G-1 and G-2 bilayer gel flowers and strips, heterogeneous healed bilayer gel strips, and microfluidic-directed bilayer gel microsphere ensembles, all show actuating behaviour in acidic, alkaline and organic solutions, with actuation degrees up to 96% in 5 min. The actuation mechanism is also proposed. This work might provide new insights into fast synthesis of self-healing dual-component gels towards application in the actuator field.
Collapse
Affiliation(s)
- Feng-Xiang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing 210009, China.
| | | | | | | | | | | |
Collapse
|
8
|
Li Q, Wang CF, Chen S. New Multichannel Frontal Polymerization Strategy for Scaled-up Production of Robust Hydrogels. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qing Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Jiangsu Key
Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Jiangsu Key
Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Jiangsu Key
Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| |
Collapse
|
9
|
Du XY, Shen J, Zhang J, Ling L, Wang CF, Chen S. Generation of a carbon dots/ammonium persulfate redox initiator couple for free radical frontal polymerization. Polym Chem 2018. [DOI: 10.1039/c7py01969f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a new redox initiator couple of ammonium persulfate (APS)/carbon dots (CDs) with high initiation efficiency used in frontal polymerization (FP).
Collapse
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing 210009
- P. R. China
- Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials
| | - Juncai Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing 210009
- P. R. China
- Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing 210009
- P. R. China
- Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials
| | - Luting Ling
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing 210009
- P. R. China
- Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing 210009
- P. R. China
- Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing 210009
- P. R. China
- Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials
| |
Collapse
|
10
|
Li S, Yan S. Rapid synthesis of macroporous graphene oxide/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels with pH-sensitive behavior by frontal polymerization. RSC Adv 2016. [DOI: 10.1039/c6ra03214a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macroporous pH-sensitive graphene oxide (GO)/poly(acrylic acid-co-acrylamide) (PAA) nanocomposite hydrogels were prepared by frontal polymerization (FP) using a solvent mixture composed of DMF and a small quantity of GO water solution as a heat conductive medium.
Collapse
Affiliation(s)
- Shengfang Li
- School of Chemistry and Chemical Engineering
- Hubei Polytechnic University
- Huangshi 435003
- PR China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation
| | - Shilin Yan
- Wuhan University of Technology
- Wuhan 430070
- PR China
| |
Collapse
|