1
|
Fang Z, Xu H, Xu Q, Meng L, Lu N, Li R, Müller-Buschbaum P, Zhong Q. High Efficiency of Formaldehyde Removal and Anti-bacterial Capability Realized by a Multi-Scale Micro-Nano Channel Structure in Hybrid Hydrogel Coating Cross-Linked on Microfiber-Based Polyurethane. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37429826 DOI: 10.1021/acsami.3c07210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Inspired by the transpiration in the tree stem having a vertical and porous channel structure, high efficiency of formaldehyde removal is realized by the multi-scale micro-nano channel structure in a hybrid P(AAm/DA)-Ag/MgO hydrogel coating cross-linked on microfiber-based polyurethane. The present multi-scale channel structure is formed by a joint effect of directional freezing and redox polymerization as well as nanoparticles-induced porosity. Due to the large number of vertically aligned channels of micrometer size and an embedded porous structure of nanometer size, the specific surface area is significantly increased. Therefore, formaldehyde from solution can be rapidly adsorbed by the amine group in the hydrogels and efficiently degraded by the Ag/MgO nanoparticles. By only immersing in formaldehyde solution (0.2 mg mL-1) for 12 h, 83.8% formaldehyde is removed by the hybrid hydrogels with a multi-scale channel structure, which is 60.8% faster than that observed in hydrogels without any channel structure. After cross-linking the hybrid hydrogels with a multi-scale channel structure to microfiber-based polyurethane and exposing to the formaldehyde vapor atmosphere, 79.2% formaldehyde is removed in 12 h, which is again 11.2% higher than that observed in hydrogels without any channel structure. Unlike the traditional approaches to remove formaldehyde by the light catalyst, no external conditions are required in our present hybrid hydrogel coating, which is very suitable for indoor use. In addition, due to the formation of free radicals by the Ag/MgO nanoparticles, the cross-linked hybrid hydrogel coating on polyurethane synthetic leather also shows good anti-bacterial capability. 99.99% of Staphylococcus aureus can be killed on the surface. Based on the good ability to remove formaldehyde and to kill bacteria, the obtained microfiber-based polyurethane cross-linked with a hybrid hydrogel coating containing a multi-scale channel structure can be used in a broad field of applications, such as furniture and car interior parts, to simultaneously solve the indoor air pollution and hygiene problems.
Collapse
Affiliation(s)
- Zheng Fang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
| | - Huawei Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Qiang Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - LiuBang Meng
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Nan Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Renhong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| |
Collapse
|
2
|
Liu X, Qian W, Chen Y, Dong M, Yu T, Huang W, Dong C. Construction of CNT-MgO-Ag-BaO Nanocomposite with Enhanced Field Emission and Hydrogen Sensing Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:885. [PMID: 36903763 PMCID: PMC10005578 DOI: 10.3390/nano13050885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
CNTs and CNT-MgO, CNT-MgO-Ag, and CNT-MgO-Ag-BaO nanocomposites were grown on alloy substrates using an electrophoretic deposition method and their field emission (FE) and hydrogen sensing performances were investigated. The obtained samples were characterized by SEM, TEM, XRD, Raman, and XPS characterizations. The CNT-MgO-Ag-BaO nanocomposites showed the best FE performance with turn-on and threshold fields of 3.32 and 5.92 V.μm-1, respectively. The enhanced FE performances are mainly attributed to the reductions of the work function, and the enhancement of the thermal conductivity and emission sites. The current fluctuation of CNT-MgO-Ag-BaO nanocomposites was only 2.4% after a 12 h test at the pressure of 6.0 × 10-6 Pa. In addition, for the hydrogen sensing performances, the CNT-MgO-Ag-BaO sample showed the best increase in amplitude of the emission current among all the samples, with the mean IN increases of 67%, 120%, and 164% for 1, 3, and 5 min emissions, respectively, under the initial emission currents of about 1.0 μA.
Collapse
Affiliation(s)
| | - Weijin Qian
- Correspondence: (W.Q.); (C.D.); Tel.: +86-577-86689067 (C.D.)
| | | | | | | | | | - Changkun Dong
- Correspondence: (W.Q.); (C.D.); Tel.: +86-577-86689067 (C.D.)
| |
Collapse
|
3
|
Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels. MICROMACHINES 2023; 14:mi14010155. [PMID: 36677217 PMCID: PMC9863090 DOI: 10.3390/mi14010155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/07/2023]
Abstract
Thermoelectric cells (TEC) directly convert heat into electricity via the Seebeck effect. Known as one TEC, thermogalvanic hydrogels are promising for harvesting low-grade thermal energy for sustainable energy production. In recent years, research on thermogalvanic hydrogels has increased dramatically due to their capacity to continuously convert heat into electricity with or without consuming the material. Until recently, the commercial viability of thermogalvanic hydrogels was limited by their low power output and the difficulty of packaging. In this review, we summarize the advances in electrode materials, redox pairs, polymer network integration approaches, and applications of thermogalvanic hydrogels. Then, we highlight the key challenges, that is, low-cost preparation, high thermoelectric power, long-time stable operation of thermogalvanic hydrogels, and broader applications in heat harvesting and thermoelectric sensing.
Collapse
Affiliation(s)
- Jiedong Zhang
- Qiushi College, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chenhui Bai
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhaosu Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao Liu
- Shanxi Transport Information Communication Company Limited, Taiyuan 030006, China
| | - Xiangyu Li
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaojing Cui
- Shanxi Transport Information Communication Company Limited, Taiyuan 030006, China
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
4
|
Cho Y, Nagatsuka S, Murakami Y. Thermoelectrochemical Seebeck coefficient and viscosity of Co-complex electrolytes rationalized by the Einstein relation, Jones-Dole B coefficient, and quantum-chemical calculations. Phys Chem Chem Phys 2022; 24:21396-21405. [PMID: 36047310 DOI: 10.1039/d2cp02985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Seebeck coefficient (Se) and the viscosity of a redox electrolyte are the key characteristics of thermoelectrochemical cells that generate electric power from waste thermal energy. However, the recent upsurge of research in this field is seriously disconnected from the knowledge of solution chemistry explored in the previous century. Herein, we systematically investigate five redox couples of cobalt complexes containing different aromatic ligands and anions in γ-butyrolactone solvent to demonstrate how the Einstein relation of hydrodynamic theory and the Jones-Dole B coefficient obtained from viscosity measurements can be used to account for such electrolyte properties. In essence, we reveal that the outer-shell (solvent reorganization) and inner-shell (metal-ligand reorganization) contributions to the redox reaction entropy ΔSrc (∝Se) can be quantified by the analyses using the B-coefficients and quantum-chemical simulations, respectively, while the distinct regimes found in the viscosity and conductivity are well accounted for by the Einstein relation, despite its classical hydrodynamic origin.
Collapse
Affiliation(s)
- Yuki Cho
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shinya Nagatsuka
- Nippon Kayaku Co., Ltd., 3-31-12 Shimo, Kita-ku, Tokyo 115-8588, Japan
| | - Yoichi Murakami
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.,Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
5
|
Trosheva MA, Buckingham MA, Aldous L. Direct measurement of the genuine efficiency of thermogalvanic heat-to-electricity conversion in thermocells. Chem Sci 2022; 13:4984-4998. [PMID: 35655863 PMCID: PMC9068204 DOI: 10.1039/d1sc06340e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Harvesting wasted thermal energy could make important contributions to global energy sustainability. Thermogalvanic devices are simple, chemistry-based devices which can convert heat to electricity, through facile redox chemistry. The efficiency of this process is the ratio of electrical energy generated by the cell (in Watts) to the quantity of thermal energy that passes through the cell (also in Watts). Prior work estimated the quantity of thermal energy passed through a thermocell by applying a conductive heat transfer model to the electrolyte. Here, we employ a heat flux sensor to unambiguously quantify both heat flux and electrical power. By evaluating the effect of electrode separation, temperature difference and gelation of the electrolyte, we found significant discrepancy between the estimated model and the quantified reality. For electrode separation, the trend between estimated and measured efficiency went in opposite directions; as a function of temperature difference, they demonstrated the same trend, but estimated values were significantly higher. This was due to significant additional convection and radiation contributions to the heat flux. Conversely, gelled electrolytes were able to suppress heat flux mechanisms and achieve experimentally determined efficiency values in excess of the estimated values (at small electrode separations), with partially gelled systems being particularly effective. This study provides the ability to unambiguously benchmark and assess the absolute efficiency and Carnot efficiency of thermogalvanic electrolytes and even the whole thermocell device, allowing 'total device efficiency' to be quantified. The deviation between the routinely applied estimation methodology and actual measurement will support the rational development of novel thermal energy harvesting chemistries, materials and devices.
Collapse
Affiliation(s)
- Maria A Trosheva
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| | - Mark A Buckingham
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| | - Leigh Aldous
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| |
Collapse
|
6
|
Das P, Sharma SK, Sanfui BK. Engineering of the structural and morphological characteristics of MWCNTs employing a nano-dimensional binary oxide coating with enhanced thermal oxidation resistance properties for the tailoring of their reinforcement potential. NEW J CHEM 2022. [DOI: 10.1039/d1nj05807j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present investigation mainly addresses the rational design of a MgAl-binary-oxide-coated MWCNT nano-hybrid architecture and the study of its reinforcement potential.
Collapse
Affiliation(s)
- Paromita Das
- Department of Ceramic Technology, Government College of Engineering and Ceramic Technology (Autonomous Post Graduate) NAAC Accredited Grade A, 73, A. C. Banerjee Lane, Kolkata-700010, West Bengal, India
| | - Savan Kumar Sharma
- Department of Ceramic Technology, Government College of Engineering and Ceramic Technology (Autonomous Post Graduate) NAAC Accredited Grade A, 73, A. C. Banerjee Lane, Kolkata-700010, West Bengal, India
| | - Barun K. Sanfui
- Department of Ceramic Technology, Government College of Engineering and Ceramic Technology (Autonomous Post Graduate) NAAC Accredited Grade A, 73, A. C. Banerjee Lane, Kolkata-700010, West Bengal, India
| |
Collapse
|
7
|
Massetti M, Jiao F, Ferguson AJ, Zhao D, Wijeratne K, Würger A, Blackburn JL, Crispin X, Fabiano S. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chem Rev 2021; 121:12465-12547. [PMID: 34702037 DOI: 10.1021/acs.chemrev.1c00218] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat is an abundant but often wasted source of energy. Thus, harvesting just a portion of this tremendous amount of energy holds significant promise for a more sustainable society. While traditional solid-state inorganic semiconductors have dominated the research stage on thermal-to-electrical energy conversion, carbon-based semiconductors have recently attracted a great deal of attention as potential thermoelectric materials for low-temperature energy harvesting, primarily driven by the high abundance of their atomic elements, ease of processing/manufacturing, and intrinsically low thermal conductivity. This quest for new materials has resulted in the discovery of several new kinds of thermoelectric materials and concepts capable of converting a heat flux into an electrical current by means of various types of particles transporting the electric charge: (i) electrons, (ii) ions, and (iii) redox molecules. This has contributed to expanding the applications envisaged for thermoelectric materials far beyond simple conversion of heat into electricity. This is the motivation behind this review. This work is divided in three sections. In the first section, we present the basic principle of the thermoelectric effects when the particles transporting the electric charge are electrons, ions, and redox molecules and describe the conceptual differences between the three thermodiffusion phenomena. In the second section, we review the efforts made on developing devices exploiting these three effects and give a thorough understanding of what limits their performance. In the third section, we review the state-of-the-art thermoelectric materials investigated so far and provide a comprehensive understanding of what limits charge and energy transport in each of these classes of materials.
Collapse
Affiliation(s)
- Matteo Massetti
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Fei Jiao
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Andrew J Ferguson
- National Renewable Energy Laboratory, Golden, Colorado, 80401 United States
| | - Dan Zhao
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Kosala Wijeratne
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Alois Würger
- Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux, 351 cours de la Libération, F-33405 Talence Cedex, France
| | | | - Xavier Crispin
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Simone Fabiano
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
8
|
Yu B, Duan J, Cong H, Xie W, Liu R, Zhuang X, Wang H, Qi B, Xu M, Wang ZL, Zhou J. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 2020; 370:342-346. [PMID: 32913001 DOI: 10.1126/science.abd6749] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Low-grade heat (below 373 kelvin) is abundant and ubiquitous but is mostly wasted because present recovery technologies are not cost-effective. The liquid-state thermocell (LTC), an inexpensive and scalable thermoelectric device, may be commercially viable for harvesting low-grade heat energy if its Carnot-relative efficiency (ηr) reaches ~5%, which is a challenging metric to achieve experimentally. We used a thermosensitive crystallization and dissolution process to induce a persistent concentration gradient of redox ions, a highly enhanced Seebeck coefficient (~3.73 millivolts per kelvin), and suppressed thermal conductivity in LTCs. As a result, we achieved a high ηr of 11.1% for LTCs near room temperature. Our device demonstration offers promise for cost-effective low-grade heat harvesting.
Collapse
Affiliation(s)
- Boyang Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangjiang Duan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hengjiang Cong
- College of Chemistry and Molecular Science, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wenke Xie
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinyan Zhuang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bei Qi
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Xu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Jun Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Alavi M, Karimi N. Hemoglobin self-assembly and antibacterial activities of bio-modified Ag-MgO nanocomposites by different concentrations of Artemisia haussknechtii and Protoparmeliopsis muralis extracts. Int J Biol Macromol 2020; 152:1174-1185. [DOI: 10.1016/j.ijbiomac.2019.10.207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
|
10
|
Ikeda Y, Fukui K, Murakami Y. Integration of thermo-electrochemical conversion into forced convection cooling. Phys Chem Chem Phys 2019; 21:25838-25848. [PMID: 31729518 DOI: 10.1039/c9cp05028k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Forced convection cooling is important in numerous technologies ranging from microprocessors in data centers to turbines and engines, and active cooling is essential in these situations. However, active transfer of heat or thermal energy under a large temperature difference promptly destroys the exergy, which is the free-energy component of the thermal energy. In this study, to partially recover presently lost exergy in such situations, thermo-electrochemical conversion is integrated into forced convection cooling. We design and fabricate a test cell in which an electrolyte liquid is forced through a channel formed between two parallel electrodes and the hot-side electrode simulates an object to be cooled. Our experimental investigations show that the narrower interelectrode channels afford higher cooling and power generation performances. The mass transfer resistance is the most dominant type of resistance for all the conditions tested and the charge transfer kinetics is found to be controlled by the electrolyte viscosity. The dependence of the generated power on the flow rate is caused by the change in the diffusion coefficient of redox species with temperature. As an evaluation measure for such forced-flow thermo-electrochemical cells, the gain (Λ)-defined as the ratio of the generated power to the hydrodynamic pumping work required to force the liquid through the cell-is introduced. Λ is above unity in a certain flow rate region. This demonstrates that such a system can generate more electric power than the hydrodynamic pump work required to drive the liquid through the cell.
Collapse
Affiliation(s)
- Yutaka Ikeda
- School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Kazuki Fukui
- School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Yoichi Murakami
- School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
11
|
Zhou Y, Qian W, Huang W, Liu B, Lin H, Dong C. Carbon Nanotube-Graphene Hybrid Electrodes with Enhanced Thermo-Electrochemical Cell Properties. NANOMATERIALS 2019; 9:nano9101450. [PMID: 31614756 PMCID: PMC6835304 DOI: 10.3390/nano9101450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
Carbon nanotube-Graphene (CNT-Gr) hybrids were prepared on stainless steel substrates by the electrophoretic deposition (EPD) to make the thermo-electrochemical cell (TEC) electrodes. The as-obtained TEC electrodes were investigated by the SEM, XRD, Raman spectroscopy, tensile, and surface resistance tests. These hybrid electrodes exhibited significant improved TEC performances compared to the pristine CNT electrode. In addition, these hybrid electrodes could be optimized by tuning the contents of the graphene in the hybrids, and the CNT-Gr-0.1 hybrid electrode showed the best TEC performance with the current density of 62.8 A·m−2 and the power density of 1.15 W·m−2, 30.4% higher than the CNT electrode. The enhanced TEC performance is attributed to improvements in the electrical and thermal conductivities, as well as the adhesion between the CNT-Gr hybrid and the substrate. Meanwhile, the relative conversion efficiency of the TECs can reach 1.35%. The investigation suggests that the growth of CNT-Gr hybrid electrodes by the EPD technique may offer a promising approach for practical applications of the carbon nanomaterial-based TEC electrodes.
Collapse
Affiliation(s)
- Yuqing Zhou
- Institute of Micro-Nano Structures & Optoelectronics, Wenzhou University, Wenzhou 325035, China.
| | - Weijin Qian
- Institute of Micro-Nano Structures & Optoelectronics, Wenzhou University, Wenzhou 325035, China.
| | - Weijun Huang
- Institute of Micro-Nano Structures & Optoelectronics, Wenzhou University, Wenzhou 325035, China.
| | - Boyang Liu
- Institute of Micro-Nano Structures & Optoelectronics, Wenzhou University, Wenzhou 325035, China.
| | - Hao Lin
- Institute of Micro-Nano Structures & Optoelectronics, Wenzhou University, Wenzhou 325035, China.
| | - Changkun Dong
- Institute of Micro-Nano Structures & Optoelectronics, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
12
|
Huang W, Xu J, He K, Li Z, Qian W, Dong C. Facile grown carbon nanotubes as thermo-electrochemical cell electrodes by chemical vapor deposition at atmospheric pressure. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/121/4/042027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Wijeratne K, Vagin M, Brooke R, Crispin X. Poly(3,4-ethylenedioxythiophene)-tosylate (PEDOT-Tos) electrodes in thermogalvanic cells. JOURNAL OF MATERIALS CHEMISTRY. A 2017; 5:19619-19625. [PMID: 29308202 PMCID: PMC5735355 DOI: 10.1039/c7ta04891b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
The interest in thermogalvanic cells (TGCs) has grown because it is a candidate technology for harvesting electricity from natural and waste heat. However, the cost of TGCs has a major component due to the use of the platinum electrode. Here, we investigate new alternative electrode material based on conducting polymers, more especially poly(3,4-ethylenedioxythiophene)-tosylate (PEDOT-Tos) together with the ferro/ferricyanide redox electrolyte. The power generated by the PEDOT-Tos based TGCs increases with the conducting polymer thickness/multilayer and reaches values similar to the flat platinum electrode based TGCs. The physics and chemistry behind this exciting result as well as the identification of the limiting phenomena are investigated by various electrochemical techniques. Furthermore, a preliminary study is provided for the stability of the PEDOT-Tos based TGCs.
Collapse
Affiliation(s)
- Kosala Wijeratne
- Department of Science and Technology , Linköping University , Campus Norrköping , S-60174 , Norrköping , Sweden .
| | - Mikhail Vagin
- Department of Science and Technology , Linköping University , Campus Norrköping , S-60174 , Norrköping , Sweden .
| | - Robert Brooke
- Department of Science and Technology , Linköping University , Campus Norrköping , S-60174 , Norrköping , Sweden .
| | - Xavier Crispin
- Department of Science and Technology , Linköping University , Campus Norrköping , S-60174 , Norrköping , Sweden .
| |
Collapse
|
14
|
Luo B, Ye D, Wang L. Recent Progress on Integrated Energy Conversion and Storage Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700104. [PMID: 28932673 PMCID: PMC5604375 DOI: 10.1002/advs.201700104] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/02/2017] [Indexed: 05/22/2023]
Abstract
Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.
Collapse
Affiliation(s)
- Bin Luo
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Delai Ye
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Lianzhou Wang
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| |
Collapse
|
15
|
Zhao F, Qian W, Li M, Li W, Chen L, Zhong F, Huang W, Dong C. Directly grown carbon nanotube based hybrid electrodes with enhanced thermo-cell performances. RSC Adv 2017. [DOI: 10.1039/c7ra02264f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ag–CNT hybrids are grown directly on stainless steel substrates, leading to much improved thermo-cell performances.
Collapse
Affiliation(s)
- Fang Zhao
- Institute of Mirco-Nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Weijin Qian
- Institute of Mirco-Nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Mengjie Li
- Institute of Mirco-Nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Wei Li
- Institute of Mirco-Nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Lihong Chen
- Institute of Mirco-Nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Fengying Zhong
- Institute of Mirco-Nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Weijun Huang
- Institute of Mirco-Nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Changkun Dong
- Institute of Mirco-Nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| |
Collapse
|
16
|
Alla SK, Mandal RK, Prasad NK. Optical and magnetic properties of Mg2+ doped CeO2 nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra23063f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanocrystalline MgxCe1−xO2 (x = 0.01, 0.03, and 0.05) particles with near uniform size were synthesized by microwave refluxing method.
Collapse
Affiliation(s)
- S. K. Alla
- Department of Metallurgical Engineering
- IIT (BHU)
- Varanasi – 221005
- India
| | - R. K. Mandal
- Department of Metallurgical Engineering
- IIT (BHU)
- Varanasi – 221005
- India
| | - N. K. Prasad
- Department of Metallurgical Engineering
- IIT (BHU)
- Varanasi – 221005
- India
| |
Collapse
|