Chen X, Huang H, Pan L, Liu T, Niederberger M. Fully Integrated Design of a Stretchable Solid-State Lithium-Ion Full Battery.
ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019;
31:e1904648. [PMID:
31489740 DOI:
10.1002/adma.201904648]
[Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/18/2019] [Indexed: 05/06/2023]
Abstract
A solid-state lithium-ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is introduced, giving rise to a battery design with mechanical properties that are compliant with flexible electronic devices and elastic wearable systems. By depositing Ag microflakes as a conductive layer on a stretchable carbon-polymer composite, a current collector with a low sheet resistance of ≈2.7 Ω □-1 at 100% strain is obtained. Stretchable electrodes are fabricated by integrating active materials with the elastic current collector. A polyacrylamide-"water-in-salt" electrolyte is developed, offering high ionic conductivity of 10-3 to 10-2 S cm-1 at room temperature and outstanding stretchability up to ≈300% of its original length. Finally, all these components are assembled into a solid-state lithium-ion full cell in thin-film configuration. Thanks to the deformable individual components, the full cell functions when stretched, bent, or even twisted. For example, after stretching the battery to 50%, a reversible capacity of 28 mAh g-1 and an average energy density of 20 Wh kg-1 can still be obtained after 50 cycles at 120 mA g-1 , confirming the functionality of the battery under extreme mechanical stress.
Collapse