1
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
2
|
Chalikidi PN, Magkoev TT, Gutnov AV, Demidov OP, Uchuskin MG, Trushkov IV, Abaev VT. One-Step Synthesis of Triphenylphosphonium Salts from (Het)arylmethyl Alcohols. J Org Chem 2021; 86:9838-9846. [PMID: 34232646 DOI: 10.1021/acs.joc.1c00733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two approaches for the synthesis of substituted phosphonium salts from easily available benzyl alcohols and their heterocyclic analogs have been developed. The developed protocols are complementary: the direct mixing of alcohol, trimethylsilyl bromide, and triphenylphosphine in 1,4-dioxane followed by heating at 80 °C was found to be more efficient for acid-sensitive substrates, such as salicyl or furfuryl alcohols as well as secondary benzyl alcohols, while a one-pot procedure including sequential addition of trimethylsilyl bromide and triphenylphosphine gave higher yields for benzyl alcohols bearing electroneutral or electron-withdrawing substituents.
Collapse
Affiliation(s)
- Petrakis N Chalikidi
- North-Ossetian State University, Vatutina st. 46, Vladikavkaz, 362025, Russian Federation
| | - Taimuraz T Magkoev
- North-Ossetian State University, Vatutina st. 46, Vladikavkaz, 362025, Russian Federation
| | - Andrey V Gutnov
- North-Ossetian State University, Vatutina st. 46, Vladikavkaz, 362025, Russian Federation.,Chiroblock GmbH, Andresenstr. 1a, Wolfen, 06766, Germany
| | - Oleg P Demidov
- North Caucasus Federal University, Pushkin st. 1, Stavropol, 355009, Russian Federation
| | - Maxim G Uchuskin
- Perm State University, Bukireva st. 15, Perm, 614990, Russian Federation
| | - Igor V Trushkov
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119334, Russian Federation.,D. Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela st. 1, Moscow, 117997, Russian Federation
| | - Vladimir T Abaev
- North-Ossetian State University, Vatutina st. 46, Vladikavkaz, 362025, Russian Federation.,North Caucasus Federal University, Pushkin st. 1, Stavropol, 355009, Russian Federation
| |
Collapse
|
3
|
He L, Su Q, Bai L, Li M, Liu J, Liu X, Zhang C, Jiang Z, He J, Shi J, Huang S, Guo L. Recent research progress on natural small molecule bibenzyls and its derivatives in Dendrobium species. Eur J Med Chem 2020; 204:112530. [PMID: 32711292 DOI: 10.1016/j.ejmech.2020.112530] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 05/30/2020] [Indexed: 02/05/2023]
Abstract
Orchidaceous plant Dendrobium genus is often used as a tonic, and its phenolic components have attracted attention for its anti-tumor and anti-diabetic complications. Bibenzyls is one of the essential phenolic active ingredients in the Dendrobium genus. At present, 89 bibenzyl derivatives have been extracted and identified from 46 Dendrobium species. The activity studies have shown that 42 compounds have pharmaceutical activity. Among them, 23 compounds showed antitumor activity; 7 compounds showed anti-diabetes and its complications activity; 10 compounds exhibited neuroprotective effects; 18 compounds showed antioxidant effects; 11 compounds had anti-inflammatory activity; 3 compounds had Antiplatelet aggregation effects; 3 compounds had antibacterial and antiviral effects. The Bibenzyls is small-molecular compounds of natural origin and widely sourced. Previous studies showed that the bibenzyls has good anti-tumor, anti-diabetes and its complications, and neuroprotective effects, and it has great potential for treating tumors, diabetes and its complications, Alzheimer's disease (AD) and Parkinson's disease (PD). Additionally, compounds such as moscatilin (1), gigantol (2) and chrysotoxine (3) have been further studied as lead compounds, and compounds exhibited therapeutical effects had been synthesized. Enough pieces of evidences have shown that the Bibenzyls have good development prospects. This article reviews the pharmacological effects of bibenzyls in Dendrobium species and provides an idea for its further development.
Collapse
Affiliation(s)
- Li He
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Su
- Health Management Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Meifeng Li
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juanru Liu
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaomei Liu
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cunyan Zhang
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhongliang Jiang
- Department of Hematology, Miller School of Medicine, University of Miami, Miami, USA
| | - Jun He
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Li Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Gong G, Jiang L, Lin Q, Liu W, He MF, Zhang J, Feng F, Qu W, Xie N. In vivo toxic effects of 4-methoxy-5-hydroxy-canthin-6-one in zebrafish embryos via copper dyshomeostasis and oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:79-87. [PMID: 29208543 DOI: 10.1016/j.cbpc.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/24/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022]
Abstract
Dysfunction of copper homeostasis can lead to a host of disorders, which might be toxic sometimes. 4-Methoxy-5-hydroxy-canthin-6-one (CAN) is one of the major constituents from Picrasma quassioides and responsible for its therapeutic effects. In this work, we evaluated the toxic effect of CAN (7.5μM) on zebrafish embryos. CAN treatment decreased survival, delayed hatching time and induced malformations (loss of pigmentation, pericardial edema, as well as hematologic and neurologic abnormalities). Besides, exogenous copper supplementation rescued the pigmentation and cardiovascular defects in CAN-treated embryos. Further spectroscopic studies revealed a copper-chelating activity of CAN. Then its regulation on the expressions of copper homeostasis related genes also be analyzed. In addition, CAN lowered the total activity of SOD, elevated the ROS production and altered the oxidative related genes transcriptions, which led to oxidative stress. In conclusion, we demonstrated that CAN (7.5μM) might exert its toxic effects in zebrafish embryos by causing copper dyshomeostasis and oxidative stress. It will give insight into the risk assessment and prevention of CAN-mediated toxicity.
Collapse
Affiliation(s)
- Guiyi Gong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lingling Jiang
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Qinghua Lin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicines and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou 341000, Jiangxi, China
| |
Collapse
|
6
|
Shuaib S, Goyal B. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β 42 monomer: insights from molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:663-678. [PMID: 28162045 DOI: 10.1080/07391102.2017.1291363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by loss of intellectual functioning of brain and memory loss. According to amyloid cascade hypothesis, aggregation of amyloid-β42 (Aβ42) peptide can generate toxic oligomers and their accumulation in the brain is responsible for the onset of AD. In spite of carrying out a large number of experimental studies on inhibition of Aβ42 aggregation by small molecules, the detailed inhibitory mechanism remains elusive. In the present study, comparable molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of a sulfonamide inhibitor C1 (2,5-dichloro-N-(4-piperidinophenyl)-3-thiophenesulfonamide), reported for its in vitro and in vivo anti-aggregation activity against Aβ42. MD simulations reveal that C1 stabilizes native α-helix conformation of Aβ42 by interacting with key residues in the central helix region (13-26) with hydrogen bonds and π-π interactions. C1 lowers the solvent-accessible surface area of the central hydrophobic core (CHC), KLVFF (16-20), that confirms burial of hydrophobic residues leading to the dominance of helical conformation in the CHC region. The binding free energy analysis with MM-PBSA demonstrates that Ala2, Phe4, Tyr10, Gln15, Lys16, Leu17, Val18, Phe19, Phe20, Glu22, and Met35 contribute maximum to binding free energy (-43.1 kcal/mol) between C1 and Aβ42 monomer. Overall, MD simulations reveal that C1 inhibits Aβ42 aggregation by stabilizing native helical conformation and inhibiting the formation of aggregation-prone β-sheet conformation. The present results will shed light on the underlying inhibitory mechanism of small molecules that show potential in vitro anti-aggregation activity against Aβ42.
Collapse
Affiliation(s)
- Suniba Shuaib
- a Department of Chemistry , School of Basic and Applied Sciences, Sri Guru Granth Sahib World University , Fatehgarh Sahib 140406 , Punjab , India
| | - Bhupesh Goyal
- a Department of Chemistry , School of Basic and Applied Sciences, Sri Guru Granth Sahib World University , Fatehgarh Sahib 140406 , Punjab , India
| |
Collapse
|