1
|
Ahmadi S, Lotay N, Thompson M. Affinity-based electrochemical biosensor with antifouling properties for detection of lysophosphatidic acid, a promising early-stage ovarian cancer biomarker. Bioelectrochemistry 2023; 153:108466. [PMID: 37244204 DOI: 10.1016/j.bioelechem.2023.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Electrochemical techniques are considered to be highly sensitive, capable of fast response and can be easily miniaturized, properties which can aid with regard to the fabrication of compact point-of-care medical devices; however, the main challenge in developing such a tool is overcoming a ubiquitous, problematic phenomenon known as non-specific adsorption (NSA). NSA is due to the fouling of non-target molecules in the blood on the recognition surface of the device. To overcome NSA, we have developed an affinity-based electrochemical biosensor using medical-grade stainless steel electrodes and following a unique and novel strategy using silane-based interfacial chemistry to detect lysophosphatidic acid (LPA), a highly promising biomarker, which was found to be elevated in 90 % of stage I OC patients and gradually increases as the disease progresses to later stages. The biorecognition surface was developed using the affinity-based gelsolin-actin system, which was previously investigated by our group to detect LPA using fluorescence spectroscopy. We demonstrate the capability of this label-free biosensor to detect LPA in goat serum with a detection limit of 0.7 µM as a proof-of-concept for the early diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Soha Ahmadi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Navina Lotay
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
2
|
Fontaine N, Harter L, Marette A, Boudreau D. Acting as a Molecular Tailor: Dye Structural Modifications for Improved Sensitivity toward Lysophosphatidic Acids Sensing. ACS OMEGA 2023; 8:1067-1078. [PMID: 36643514 PMCID: PMC9835520 DOI: 10.1021/acsomega.2c06420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Lysophosphatidic acids (LPA) are key biomarkers for several physiological processes, the monitoring of which can provide insights into the host's health. Common lab-based techniques for their detection are cumbersome, expensive, and necessitate specialized personnel to operate. LPA-sensitive fluorescent probes have been described, albeit for nonaqueous conditions, which impedes their use in biological matrices. In this paper, we explore in detail the influence of structure on the extent of aggregation-induced fluorescence quenching using specially synthesized styrylpyridinium dyes bearing structural adaptations to bestow them enhanced affinity toward LPA in aqueous media. Spectroscopic investigations supported by time-resolved fluorimetry revealed the contribution of excimer formation to the fluorescence quenching mechanism displayed by the fluorescent probes. Experimental observations of the influence of structure on detection sensitivity were supported by DFT calculations.
Collapse
Affiliation(s)
- Nicolas Fontaine
- Department
of Chemistry, Université Laval, 1045 avenue de la Médecine, Québec, CanadaG1V 0A6
- Center
for Optics, Photonics and Lasers, Université
Laval, 2375 rue de la
Terrasse, Québec, CanadaG1V 0A6
| | - Lara Harter
- Department
of Chemistry, Université Laval, 1045 avenue de la Médecine, Québec, CanadaG1V 0A6
- Center
for Optics, Photonics and Lasers, Université
Laval, 2375 rue de la
Terrasse, Québec, CanadaG1V 0A6
| | - André Marette
- Quebec
Heart and Lung Institute, Université
Laval, 2725, chemin Sainte-Foy, Québec, CanadaG1V 4G5
- Institute
of Nutrition and Functional Foods, Université
Laval, 2440, boulevard
Hochelaga, Québec, QC, CanadaG1V 0A6
| | - Denis Boudreau
- Department
of Chemistry, Université Laval, 1045 avenue de la Médecine, Québec, CanadaG1V 0A6
- Center
for Optics, Photonics and Lasers, Université
Laval, 2375 rue de la
Terrasse, Québec, CanadaG1V 0A6
| |
Collapse
|
3
|
Huang X, Feng B, Liu M, Liu Z, Li S, Zeng W. Preclinical detection of lysophosphatidic acid: A new window for ovarian cancer diagnostics. Talanta 2022; 247:123561. [DOI: 10.1016/j.talanta.2022.123561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/17/2022]
|
4
|
Kittakoop P, Darshana D, Sangsuwan R, Mahidol C. Alkaloids and Alkaloid-Like Compounds are Potential Scaffolds of Antiviral Agents against SARS-CoV-2 (COVID-19) Virus. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
LI NS, CHEN L, XIAO ZX, YANG YQ, AI KL. Progress in Detection of Biomarker of Ovarian Cancer: Lysophosphatidic Acid. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Yang J, Liu X, Wang H, Tan H, Xie X, Zhang X, Liu C, Qu X, Hua J. A turn-on near-infrared fluorescence probe with aggregation-induced emission based on dibenzo[a,c]phenazine for detection of superoxide anions and its application in cell imaging. Analyst 2019; 143:1242-1249. [PMID: 29431796 DOI: 10.1039/c7an01860f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new turn-on near-infrared fluorescence probe (BDP) based on dibenzo[a,c]phenazine for superoxide anion detection with aggregation-induced emission properties as well as a desirable large Stokes shift was designed and synthesized. After BDP reacted with superoxide, the initial diphenyl-phosphinyl groups of BDP were cleaved, resulting in the production of the pyridinium modified fluorophore (BD) with near-infrared emission. The fluorescent sensor BDP has a high selectivity for superoxide anions over some other intracellular ROSs, reductants, metal ions and amino acids. When HepG2 cells undergo apoptosis and inflammation, BDP is a good probe to keep track of the endogenous superoxide anion level by confocal laser scanning microscopic imaging.
Collapse
Affiliation(s)
- Ji Yang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, College of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zheng Z, Geng WC, Gao J, Wang YY, Sun H, Guo DS. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene. Chem Sci 2018; 9:2087-2091. [PMID: 29675249 PMCID: PMC5892409 DOI: 10.1039/c7sc04989g] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
We designed a water-soluble guanidinium-modified calix[5]arene to target lysophosphatidic acid (LPA), an ideal biomarker for early diagnosis of ovarian and other gynecologic cancers, achieving binding on the nanomolar level. An indicator displacement assay, coupled with differential sensing, enabled ultrasensitive and specific detection of LPA. Moreover, we show that using a calibration line, the LPA concentration in untreated serum can be quantified in the biologically relevant low μM range with a detection limit of 1.7 μM. The reported approach is feasible for diagnosing ovarian and other gynecologic cancers, particularly at their early stages.
Collapse
Affiliation(s)
- Zhe Zheng
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Wen-Chao Geng
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Jie Gao
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Yu-Ying Wang
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Hongwei Sun
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Dong-Sheng Guo
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
- Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| |
Collapse
|