1
|
Martínez-Pinna J, Sempere-Navarro R, Medina-Gali RM, Fuentes E, Quesada I, Sargis RM, Trasande L, Nadal A. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 324:E488-E505. [PMID: 37134142 PMCID: PMC10228669 DOI: 10.1152/ajpendo.00068.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic β-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional β-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of β-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by β-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.
Collapse
Affiliation(s)
- Juan Martínez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Roberto Sempere-Navarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Fuentes
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
- Wagner School of Public Service, New York University, New York, New York, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Resveratrol, Endocrine Disrupting Chemicals, Neurodegenerative Diseases and Depression: Genes, Transcription Factors, microRNAs, and Sponges Involved. Neurochem Res 2023; 48:604-624. [PMID: 36245065 DOI: 10.1007/s11064-022-03787-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
We aimed to examine the molecular basis of the positive effect of resveratrol against amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), cognitive impairment (CI), and depression induced by a mixture of bisphenol A (BPA), BPS, and BPF. The CTD, GeneMania, Metascape, SwissADME, Cytoscape, MIENTURNET, miRNAsong, and Autodock Vina were the fundamental tools for analysis. Resveratrol exerts its protective effects on selected diseases induced by a mixture of BPA, BPS, and BPF through the following genes: PTGS2 and GSR for ALS; INS, IL6, BDNF, and SOD1 for PD; BDNF, CASP3, TNF, INS, IGF1, IL1B for CI; and BDNF, PTGS2, and IL6 for depression. Detoxification was noted as the most important for ALS, dopamine metabolism for PD, apoptosis for CI, and the selenium micronutrient network for depression. hsa-miR-377-3p, hsa-miR-1-3p, hsa-miR-128-3p, and hsa-miR-204-5p were highlighted. We created and tested in silico sponges that inhibited these miRNAs. NFE2L2, BACH1, PPARG, and NR4A3 were listed as the key transcription factors implicated in resveratrol's protective effect against harmful studied chemicals. Furthermore, resveratrol's physicochemical properties and pharmacokinetics are consistent with its therapeutic benefits in ALS, PD, CI, and depression, owing to its high gastrointestinal absorption, drug-likeness, non-P-glycoprotein substrate, and capacity to penetrate the blood-brain barrier.
Collapse
|
3
|
Controlling amyloid formation of intrinsically disordered proteins and peptides: slowing down or speeding up? Essays Biochem 2022; 66:959-975. [PMID: 35975807 DOI: 10.1042/ebc20220046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022]
Abstract
The pathological assembly of intrinsically disordered proteins/peptides (IDPs) into amyloid fibrils is associated with a range of human pathologies, including neurodegeneration, metabolic diseases and systemic amyloidosis. These debilitating disorders affect hundreds of millions of people worldwide, and the number of people affected is increasing sharply. However, the discovery of therapeutic agents has been immensely challenging largely because of (i) the diverse number of aggregation pathways and the multi-conformational and transient nature of the related proteins or peptides and (ii) the under-development of experimental pipelines for the identification of disease-modifying molecules and their mode-of-action. Here, we describe current approaches used in the search for small-molecule modulators able to control or arrest amyloid formation commencing from IDPs and review recently reported accelerators and inhibitors of amyloid formation for this class of proteins. We compare their targets, mode-of-action and effects on amyloid-associated cytotoxicity. Recent successes in the control of IDP-associated amyloid formation using small molecules highlight exciting possibilities for future intervention in protein-misfolding diseases, despite the challenges of targeting these highly dynamic precursors of amyloid assembly.
Collapse
|
4
|
Gao X, Lin Y, Li J, Xu Y, Qian Z, Lin W. Accumulation and passive sampling of bisphenol analogues using triolein-embedded cellulose acetate membrane in waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:148985. [PMID: 34329931 DOI: 10.1016/j.scitotenv.2021.148985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol analogues (BPs) are emerging contaminants that have been widely detected in water environments. The presence of substituted hydrophilic and hydrophobic groups in the molecule may lead to unclear performance in passive sampling. This study tested the accumulation capacity and passive sampling of fifteen BPs in a triolein-embedded cellulose acetate membrane (TECAM) passive sampler. In a dynamic accumulation experiment, twelve hydrophobic BPs accumulated in the TECAM with concentrations ranging from 251 ng g-1 to 6283 ng g-1, and three hydrophilic BPs did not accumulate during the 72 h exposure duration. BPs accumulations were determined by the hydrophilic and hydrophobic substituent groups in molecule structures. The estimated passive sampling parameters showed correlations to both the log Kow values and chemical structures, and compared to other contaminants, such as organophosphorus flame retardants. Environmental factors, including flow rate, temperature, salinity, and pH, that affect the accumulation of BPs in the TECAM were tested, and the flow rate was found to be an important factor affecting the uptake rate. The isotropic exchange kinetics for BPs in the TECAM were verified, and the results indicated that BPs can be calibrated with performance reference compounds (PRCs) in field applications. Finally, a field deployment of TECAM in river waters successfully estimated the time-weighted concentrations of two hydrophobic BPs. To address the inherent weaknesses of TECAM in sampling hydrophilic and moderately hydrophobic BPs, future studies should explore alternative passive samplers, such as hydrophilic-lipophilic balance sorbent-embedded cellulose acetate membranes, to sample BPs in surface waters.
Collapse
Affiliation(s)
- Xiaozhong Gao
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Chemistry College, Hanshan Normal University, Chaozhou 521041, China
| | - Yuyang Lin
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenjie Lin
- Chemistry College, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|
5
|
Wang R, Huang Y, Dong S, Wang P, Su X. The occurrence of bisphenol compounds in animal feed plastic packaging and migration into feed. CHEMOSPHERE 2021; 265:129022. [PMID: 33288279 DOI: 10.1016/j.chemosphere.2020.129022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Animal-derived food plays an important role in human exposure to bisphenol compounds (BPs), potentially as a result of the presence of BPs in animal feed. Even so, there have been few studies regarding the source of BPs in animal feed. The objective of the present study was to assess both the occurrence of BPs in animal feed packaging and the migration of BPs from feed packaging into animal feed. Thirteen BPs were monitored in 30 used animal feed plastic packaging samples previously employed for different animal feedstuffs and made of polypropylene (PP) or polyethylene (PE). Six and two BPs were found in PP-based woven bags and PE-based films, respectively. Bisphenol A (BPA) was the predominant analogue with a wide range of concentrations in both the PP- and PE-based packaging. A migration experiment was performed and provided the first-ever confirmation that BPA is able to migrate from plastic packaging into solid feed. Both contact time and the initial BP concentration affected the extent of migration. These results expand our knowledge regarding the origin of BPs in the food chain and suggest that further study of the bioaccumulation of BPs in animals is warranted.
Collapse
Affiliation(s)
- Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| |
Collapse
|
6
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Ma L, Yang C, Huang L, Chen Y, Li Y, Cheng C, Cheng B, Zheng L, Huang K. Glycated Insulin Exacerbates the Cytotoxicity of Human Islet Amyloid Polypeptides: a Vicious Cycle in Type 2 Diabetes. ACS Chem Biol 2019; 14:486-496. [PMID: 30715843 DOI: 10.1021/acschembio.8b01128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) is one of the triggering factors of type 2 diabetes mellitus (T2DM). hIAPP is cosynthesized, costored, and cosecreted with insulin in pancreatic β-cells, and insulin inhibits hIAPP aggregation. In T2DM patients, long-term hyperglycemia causes glycation of near 10% of total insulin. The glycation not only modifies insulin but also cross-links insulin into oligomers. However, the effect of glycated human insulin on hIAPP aggregation is unknown. In this study, four physiologically relevant monosaccharides, methylglyoxal, glucose, fructose, and ribose were used to glycate human insulin and two C-terminus truncated insulin analogues. Glycated insulin monomers or low molecular weight oligomers such as dimers significantly exacerbated the cytotoxicity of hIAPP. Notably, glycation-induced cross-linking of insulin inhibited the aggregation, membrane disruption, and cytotoxicity of hIAPP, which was corroborated by a control study using EGS-induced cross-linking of insulin or lysozyme. Removal of B29Lys on the C terminus of the insulin B chain not only abolished glycation-induced cross-linking but also attenuated the aggravation effect of glycated insulin on hIAPP cytotoxicity. Taken together, this study reveals a vicious cycle in T2DM, that hyperglycemia-driven insulin glycation exacerbates the cytotoxicity of hIAPP, which accelerates β-cells death and further deteriorates T2DM.
Collapse
Affiliation(s)
- Liang Ma
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Chen Yang
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Lianqi Huang
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Yuchen Chen
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Yang Li
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Cheng Cheng
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430014
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences , Wuhan University , Wuhan , China , 430072
| | - Kun Huang
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| |
Collapse
|