1
|
Popova AD, Sheveyko AN, Kuptsov KA, Advakhova DY, Karyagina AS, Gromov AV, Krivozubov MS, Orlova PA, Volkov AV, Slukin PV, Ignatov SG, Shubina IZ, Ilnitskaya AS, Gloushankova NA, Timoshenko RV, Erofeev AS, Shtansky DV. Osteoconductive, Osteogenic, and Antipathogenic Plasma Electrolytic Oxidation Coatings on Titanium Implants with BMP-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37274-37289. [PMID: 37499236 DOI: 10.1021/acsami.3c08954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing Na2HPO4, Ca(OH)2, (NH2)2CO, Na2SiO3, CuSO4, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in vivo in a mouse craniotomy model. Tests for bactericidal and fungicidal activity were carried out using clinically isolated multi-drug-resistant Escherichia coli (E. coli) K261, E. coli U20, methicillin-resistant Staphylococcus aureus (S. aureus) CSA154 bacterial strains, and Neurospora crassa (N. crassa) and Candida albicans (C. albicans) D2528/20 fungi. The PEO-Cu coating effectively inactivated both Gram-positive and Gram-negative bacteria at low concentrations of Cu2+ ions: minimal bactericidal concentration for E. coli and N. crassa (99.9999%) and minimal inhibitory concentration (99.0%) for S. aureus were 5 ppm. For all studied bacterial and fungal strains, PEO-Cu coating completely prevented the formation of bacterial and fungal biofilms. PEO and PEO-Cu coatings demonstrated bone remodeling and moderate osteoconductivity in vivo, while BMP-2 significantly enhanced osteoconduction and osteogenesis. The obtained results are encouraging and indicate that Ti-based materials with PEO coatings loaded with BMP-2 can be widely used in customized medicine as implants for orthopedics and cranio-maxillofacial surgery.
Collapse
Affiliation(s)
- Anastasiya D Popova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | | | | | - Darya Yu Advakhova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gori 1, Str. 40, Moscow 119992, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Alexey V Volkov
- The Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia, National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia, National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Irina Zh Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Alla S Ilnitskaya
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Natalia A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Roman V Timoshenko
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Alexander S Erofeev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| |
Collapse
|
2
|
Kaseem M, Choe HC. Synchronized Improvements in the Protective and Bioactive Properties of Plasma-Electrolyzed Layers via Cellulose Microcrystalline. ACS Biomater Sci Eng 2023; 9:197-210. [PMID: 36576437 DOI: 10.1021/acsbiomaterials.2c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study reports synchronized improvements in the protective and bioactive properties of Ti-6Al-4V alloy through the formation of titania-based inorganic layers by considering the role of cellulose microcrystalline (CMC) additive into account. Acetate-phosphate-based electrolyte with cellulose CMC is formulated for the first time to modify the porous structure of the oxide layers made via plasma electrolysis of Ti-6Al-4V alloy. The presence of CMC (0, 1, 2, 3 g/L) changed the characteristics of plasma discharges where porous oxide layers with different pore sizes and surface roughness were obtained. A rough oxide layer with large pores was found in the 3 g/L CMC, while a slightly smoother oxide layer with smaller pores was obtained in the case of 2 g/L CMC. The -OH groups in CMC would facilitate the formation of an adsorption layer on the substrate surface, affecting the sparking behavior during plasma electrolysis (PE). Due to a synergy between controlled microstructure, surface roughness, and the insertion of bioactive phases, the coated samples in CMC-containing electrolytes displayed protective and bioactive properties simultaneously. Based on the obtained results, the samples coated in CMC-containing electrolytes can be used as safe implants to replace missing teeth in dental applications.
Collapse
Affiliation(s)
- Mosab Kaseem
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul05006, South Korea
| | - Han-Choel Choe
- Advanced Functional Surface and Bio-materials Research Laboratory, Department of Dental Materials and Research Center of Surface Control for Oral Tissue Regeneration (BRL Center of NRF), College of Dentistry, Chosun University, Gwangju61452, South Korea
| |
Collapse
|
3
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
4
|
Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:279-287. [DOI: 10.1016/j.msec.2018.12.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/26/2018] [Accepted: 12/29/2018] [Indexed: 12/31/2022]
|
5
|
Bolbasov EN, Popkov DA, Kononovich NA, Gorbach EN, Khlusov IA, Golovkin AS, Stankevich KS, Ignatov VP, Bouznik VM, Anissimov YG, Tverdokhlebov SI, Popkov AV. Flexible intramedullary nails for limb lengthening: a comprehensive comparative study of three nails types. Biomed Mater 2019; 14:025005. [DOI: 10.1088/1748-605x/aaf60c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Influence of SiO2 Particles on the Corrosion and Wear Resistance of Plasma Electrolytic Oxidation-Coated AM50 Mg Alloy. COATINGS 2018. [DOI: 10.3390/coatings8090306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The influence of SiO2 particles on the microstructure, phase composition, corrosion and wear performance of plasma electrolytic oxidation (PEO) coatings on AM50 Mg was investigated. Different treatment durations were applied to fabricate coatings in an alkaline, phosphate-based electrolyte (1 g/L KOH + 20 g/L Na3PO4 + 5 g/L SiO2), aiming to control the incorporated amount of SiO2 particles in the layer. It was found that the uptake of particles was accompanied by the coating growth at the initial stage, while the particle content remained unchanged at the final stage, which is dissimilar to the evolution of the coating thickness. The incorporation mode of the particles and phase composition of the layer was not affected by the treatment duration under the voltage-control regime. The corrosion performance of the coating mainly depends on the barrier property of the inner layer, while wear resistance primarily relies on the coating thickness.
Collapse
|
7
|
|
8
|
Rizwan M, Alias R, Zaidi UZ, Mahmoodian R, Hamdi M. Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review. J Biomed Mater Res A 2017; 106:590-605. [PMID: 28975693 DOI: 10.1002/jbm.a.36259] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 01/15/2023]
Abstract
Plasma electrolytic oxidation (PEO) is an advance technique to develop porous oxidation layer on light metals, primarily to enhance corrosion and wear resistance. The oxidation layer can also offer a wide variety of mechanical, biomedical, tribological, and antibacterial properties through the incorporation of several ions and particles. Due to the increasing need of antimicrobial surfaces for biomedical implants, antibacterial PEO coatings have been developed through the incorporation of antibacterial agents. Metallic nanoparticles that have been employed most widely as antibacterial agents are reported to demonstrate serious health and environmental threats. To overcome the current limitations of these coatings, there is a significant need to develop antibacterial surfaces that are not harmful for patient's health and environment. Attention of the readers has been directed to utilize bioactive glasses as antibacterial agents for PEO coatings. Bioactive glasses are well known for their excellent bioactivity, biocompatibility, and antibacterial character. PEO coatings incorporated with bioactive glasses can provide environment-friendly antimicrobial surfaces with exceptional bioactivity, biocompatibility, and osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 590-605, 2018.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Metallurgical Engineering, Faculty of Chemical and Process Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Rodianah Alias
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Manufacturing Technology, Faculty of Innovative Design and Technology, University Sultan Zainal Abidin (UNISZA), Kuala Terengganu, 21030, Malaysia
| | - Umi Zhalilah Zaidi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Reza Mahmoodian
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Research and Development, Azarin Kar Ind. Co., Industrial Park 1, Kerman, 7635168361, Iran
| | - Mohd Hamdi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
9
|
Dou J, Chen Y, Chi Y, Li H, Gu G, Chen C. Preparation and characterization of a calcium-phosphate-silicon coating on a Mg-Zn-Ca alloy via two-step micro-arc oxidation. Phys Chem Chem Phys 2017; 19:15110-15119. [PMID: 28561125 DOI: 10.1039/c7cp02672b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnesium alloys are the most promising implant materials due to their excellent biodegradability. However, their high degradation rate limits their practical application. In this study, we produced a calcium-phosphate (Ca-P) coating and a calcium-phosphate-silicon (Ca-P-Si) coating via one-step and two-step micro-arc oxidation processes, respectively. The microstructure and chemical composition of the MAO coatings were characterized using SEM, XRD and EDS. The degradation behaviors of the MAO coatings and the substrate were investigated using electrochemical techniques and immersion tests in simulated body fluid (SBF). The results show that the silicate was successfully incorporated into the Ca-P coating in the second MAO step, and this also increased the thickness of the coating. The Ca-P-Si coatings remarkably reduced the corrosion rate of the Mg alloy and Ca-P coating during 18 days of immersion in SBF. In addition, the bone-like apatite layer on the sample surface demonstrated the good biomineralization ability of the Ca-P-Si coating. Potentiodynamic polarization results showed that the MAO coating could clearly enhance the corrosion resistance of the Mg alloy. Moreover, we propose the growth mechanism of the MAO coating in the second step.
Collapse
Affiliation(s)
- Jinhe Dou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jingshi Road # 17923, Ji'nan 250061, Shandong, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
Toward improved mechanical, tribological, corrosion and in-vitro bioactivity properties of mixed oxide nanotubes on Ti–6Al–7Nb implant using multi-objective PSO. J Mech Behav Biomed Mater 2017; 69:1-18. [DOI: 10.1016/j.jmbbm.2016.11.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 01/11/2023]
|
11
|
Das I, Chattopadhyay S, Mahato A, Kundu B, De G. Fabrication of a cubic zirconia nanocoating on a titanium dental implant with excellent adhesion, hardness and biocompatibility. RSC Adv 2016. [DOI: 10.1039/c6ra10661g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Crystalline cubic zirconia nanocoating on cpTi with enhanced surface hardness, durability and biocompatibility, useful as an advanced oral implant was fabricated by applying layer-by-layer dip-coating at low annealing temperature.
Collapse
Affiliation(s)
- Indranee Das
- Nano-Structured Materials Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata 700032
- India
| | - Shreyasi Chattopadhyay
- Nano-Structured Materials Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata 700032
- India
| | - Arnab Mahato
- Bioceramics and Coating Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata 700032
- India
| | - Biswanath Kundu
- Bioceramics and Coating Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata 700032
- India
| | - Goutam De
- Nano-Structured Materials Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata 700032
- India
| |
Collapse
|
12
|
Liangzhi G, Weibin Z, Yuhui S. Magnesium substituted hydroxyapatite whiskers: synthesis, characterization and bioactivity evaluation. RSC Adv 2016. [DOI: 10.1039/c6ra24469f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnesium (Mg) substituted hydroxyapatite (Mg-HAp) whiskers were hydrothermally synthesized using acetamide as a homogeneous precipitation reagent.
Collapse
Affiliation(s)
- Gong Liangzhi
- Department of Orthopaedics
- Shanghai Institute of Orthopaedics & Traumatology
- Shanghai Ruijin Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
| | - Zhang Weibin
- Department of Orthopaedics
- Shanghai Institute of Orthopaedics & Traumatology
- Shanghai Ruijin Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
| | - Shen Yuhui
- Department of Orthopaedics
- Shanghai Institute of Orthopaedics & Traumatology
- Shanghai Ruijin Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
| |
Collapse
|