1
|
Das A, Mohit, Thomas KRJ. Donor-Acceptor Covalent Organic Frameworks as a Heterogeneous Photoredox Catalyst for Scissoring Alkenes to Carbonyl Constituents. J Org Chem 2023; 88:14065-14077. [PMID: 37695568 DOI: 10.1021/acs.joc.3c01594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The conversion of alkenes to carbonyl constituents via the cleavage of the C═C bond is unique due to its biological and pharmacological significance. Though a number of oxidative C═C cleavage protocols have been demonstrated for terminal and electron-rich alkene systems, none of them were optimized for electron-deficient and conjugated alkenes. In this work, a covalent organic framework containing triphenylamine and triazine units was revealed to cleave the C═C bond of alkenes under very mild conditions involving visible light irradiation due to its photoredox property. The alkenes can be conveniently broken across the double bond to their constituent carbonyl derivatives on light irradiation in the presence of air and the covalent organic framework photocatalyst. This protocol is applicable for a wide range of alkenes in an aqueous acetonitrile medium with high functional group tolerance and regioselectivity. Though the electron-deficient alkenes required tetramethylethylene diamine as a sacrificial donor, the electron-rich alkenes do not demand any additives.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mohit
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
2
|
Nguyen K, Nguyen V, Tran H, Pham P. Organo-photocatalytic C-H bond oxidation: an operationally simple and scalable method to prepare ketones with ambient air. RSC Adv 2023; 13:7168-7178. [PMID: 36891491 PMCID: PMC9986805 DOI: 10.1039/d3ra00332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Oxidative C-H functionalization with O2 is a sustainable strategy to convert feedstock-like chemicals into valuable products. Nevertheless, eco-friendly O2-utilizing chemical processes, which are scalable yet operationally simple, are challenging to develop. Here, we report our efforts, via organo-photocatalysis, in devising such protocols for catalytic C-H bond oxidation of alcohols and alkylbenzenes to ketones using ambient air as the oxidant. The protocols employed tetrabutylammonium anthraquinone-2-sulfonate as the organic photocatalyst which is readily available from a scalable ion exchange of inexpensive salts and is easy to separate from neutral organic products. Cobalt(ii) acetylacetonate was found to be greatly instrumental to oxidation of alcohols and therefore was included as an additive in evaluating the alcohol scope. The protocols employed a nontoxic solvent, could accommodate a variety of functional groups, and were readily scaled to 500 mmol scale in a simple batch setting using round-bottom flasks and ambient air. A preliminary mechanistic study of C-H bond oxidation of alcohols supported the validity of one possible mechanistic pathway, nested in a more complex network of potential pathways, in which the anthraquinone form - the oxidized form - of the photocatalyst activates alcohols and the anthrahydroquinone form - the relevant reduced form of the photocatalyst - activates O2. A detailed mechanism, which reflected such a pathway and was consistent with previously accepted mechanisms, was proposed to account for formation of ketones from aerobic C-H bond oxidation of both alcohols and alkylbenzenes.
Collapse
Affiliation(s)
- Ky Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Van Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Hieu Tran
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Phong Pham
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| |
Collapse
|
3
|
Highly selective photocatalytic oxidation of alcohols under the application of novel metal organic frameworks (MOFs) based catalytic system. J Colloid Interface Sci 2023; 629:136-143. [DOI: 10.1016/j.jcis.2022.08.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
|
4
|
Matsuyama T, Yatabe T, Yabe T, Yamaguchi K. Decarbonylation of 1,2-Diketones to Diaryl Ketones via Oxidative Addition Enabled by an Electron-Deficient Au–Pd Nanoparticle Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takehiro Matsuyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Chen Y, Liu AG, Liu PD, Zhang ZY, Yu F, Qi W, Li B. Application of Copper(II)-Organic Frameworks Bearing Dilophine Derivatives in Photocatalysis and Guest Separation. Inorg Chem 2022; 61:16009-16019. [PMID: 36153966 DOI: 10.1021/acs.inorgchem.2c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functionalized design of metal-organic frameworks (MOFs) has been rapidly developed in the last 20 years, and its broad applicability has been demonstrated in many fields. MOFs with desired functions can be assembled using predesigned organic linkers with specific metal nodes, which possess the ordered functional sites and open structures. Although a large number of carboxylic acid junctions have been used to construct MOFs, it is still a great challenge to realize their multifunctionality. In particular, there is a relative lack of research on MOFs as direct photocatalysts, which require not only abundant active sites and open structures but also adsorption groups and effective electron-hole separation performance. To this end, MOFs constructed from the carboxylic acid ligands derived from lophine-based derivatives and copper ions were deliberately used as a photocatalyst, and then, their application in dye degradation and aromatic alcohol conversion was investigated. In addition, in combination with the abundant Lewis sites of copper ions and imidazole sites, the material shows not only the adsorption and separation of C2 series and dyes but also the application of dye degradation and conversion of aromatic alcohols under illumination conditions. The corresponding results fully illustrate that the MOF constructed by using lophine derivatives can be an effective way to prepare photocatalysts. The subsequent research ideas will focus on designing a series of MOFs constructed with multilinked moieties of lophine groups and exploring their application strategies in the field of photocatalysis.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ao-Gang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Peng-da Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zhen-Yi Zhang
- Bruker Company, 9F, Building NO. 1, Lane 2570, Hechuan Rd, Minhang District, Shanghai 200233, China
| | - Fan Yu
- State Key Laboratory of Precision Blasting, Hubei Key Laboratory of Blasting Engineering, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People's Republic of China
| | - Wei Qi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
6
|
Tambe SD, Cho EJ. Organophotocatalytic oxidation of alcohols to carboxylic acids. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shrikant D. Tambe
- Department of Chemistry Chung‐Ang University Dongjak‐Gu, Seoul Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry Chung‐Ang University Dongjak‐Gu, Seoul Republic of Korea
| |
Collapse
|
7
|
Zhang R, Li X, Gao Z. Pd-catalyzed selective oxidation of allyl alcohols to access enones and enals. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Kong L, Meng J, Tian W, Liu J, Hu X, Jiang ZH, Zhang W, Li Y, Bai LP. I 2-Catalyzed Carbonylation of α-Methylene Ketones to Synthesize 1,2-Diaryl Diketones and Antiviral Quinoxalines in One Pot. ACS OMEGA 2022; 7:1380-1394. [PMID: 35036799 PMCID: PMC8757360 DOI: 10.1021/acsomega.1c06017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
An efficient approach for the synthesis of 1,2-diaryl diketones was developed from readily available α-methylene ketones by catalysis of I2. In the same oxidation system, a novel one-pot procedure was established for the construction of antiviral and anticancer quinoxalines. The reactions proceeded well with a wide variety of substrates and good functional group tolerance, affording desired compounds in moderate to excellent yields. Quinoxalines 4ca and 4ad inhibited viral entry of SARS-CoV-2 spike pseudoviruses into HEK-293T-ACE2h host cells as dual blockers of both human ACE2 receptor and viral spike RBD with IC50 values of 19.70 and 21.28 μM, respectively. In addition, cytotoxic evaluation revealed that 4aa, 4ba, 4ia, and 4ab suppressed four cancer cells with IC50 values ranging from 6.25 to 28.55 μM.
Collapse
Affiliation(s)
- Lingkai Kong
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
- School
of Chemistry and Chemical Engineering, Linyi
University, Linyi, Shandong 276000, People’s Republic of China
| | - Jieru Meng
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Wenyue Tian
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Jiazheng Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Xueping Hu
- School
of Chemistry and Chemical Engineering, Linyi
University, Linyi, Shandong 276000, People’s Republic of China
| | - Zhi-Hong Jiang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Wei Zhang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Yanzhong Li
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Li-Ping Bai
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| |
Collapse
|
9
|
Wei J, Yu L, Yan L, Bai W, Lu X, Gao Z. Synthesis of 9,9-bis(4-hydroxyphenyl) fluorene catalyzed by bifunctional ionic liquids. RSC Adv 2021; 11:32559-32564. [PMID: 35493579 PMCID: PMC9041788 DOI: 10.1039/d1ra05967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
Through structural design, a series of bifunctional ionic liquids (BFILs) containing sulfonic acid (-SO3H) and sulfhydryl groups (-SH) were synthesized and characterized by NMR and MS. The acidity of these BFILs was measured by the Hammett acidity (H 0) and the effective sulfhydryl molar content of BFILs was determined by Ellman's method. Moreover, BFIL's catalytic properties in the condensation reaction of 9-fluorenone and phenol were studied. BFIL catalyst 6c can achieve nearly 100% conversion of 9-fluorenone with a high selectivity of 9,9-bis(4-hydroxyphenyl) fluorene (95.2%).
Collapse
Affiliation(s)
- Jialun Wei
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 China
| | - Limei Yu
- State Key Lab of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116024 China +86 13942698335
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 China
| | - Lei Yan
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 China
| | - Wei Bai
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 China
| | - Xinxin Lu
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 China
| | - Zhanxian Gao
- State Key Lab of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116024 China +86 13942698335
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 China
| |
Collapse
|
10
|
Xie P, Xue C, Shi S, Du D. Visible-Light-Driven Selective Air-Oxygenation of C-H Bond via CeCl 3 Catalysis in Water. CHEMSUSCHEM 2021; 14:2689-2693. [PMID: 33877736 DOI: 10.1002/cssc.202100682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Visible-light-induced C-H aerobic oxidation is an important chemical transformation that can be applied for the synthesis of aromatic ketones. High-cost catalysts and toxic solvents were generally needed in the present methodologies. Here, an efficient aqueous C-H aerobic oxidation protocol was reported. Through CeCl3 -mediated photocatalysis, a series of aromatic ketones were produced in moderate to excellent yields. With air as the oxidant, this reaction could be performed under mild conditions in water and demonstrated high activity and functional group tolerance. This method is economical, highly efficient, and environmentally friendly, and it will provide inspiration for the development of aqueous photochemical synthesis reactions.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Sanshan Shi
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| |
Collapse
|
11
|
Zhang H, Xu T, Li D, Cheng T, Chen J, Zhou Y. Gold complexes of bis-indazole-derived N-Heterocyclic carbene: Synthesis, structural characterizations, and catalysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Das AK, Nandy S, Bhar S. Chemoselective and ligand‐free aerobic oxidation of benzylic alcohols to carbonyl compounds using alumina‐supported mesoporous nickel nanoparticle as an efficient recyclable heterogeneous catalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Asit Kumar Das
- Department of Chemistry Krishnath College Berhampore India
| | - Sneha Nandy
- Department of Chemistry Jadavpur University Kolkata India
| | - Sanjay Bhar
- Department of Chemistry Jadavpur University Kolkata India
| |
Collapse
|
13
|
Wang A, Zhou W, Sun Z, Zhang Z, Zhang Z, He M, Chen Q. Mn(III) active site in hydrotalcite efficiently catalyzes the oxidation of alkylarenes with molecular oxygen. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Lubov DP, Talsi EP, Bryliakov KP. Methods for selective benzylic C–H oxofunctionalization of organic compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Li X, Zhou Z, Zhao Y, Ramella D, Luan Y. Copper‐doped sulfonic acid‐functionalized MIL‐101(Cr) metal–organic framework for efficient aerobic oxidation reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiujuan Li
- School of Materials Science and Engineering University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District Beijing 100083 China
| | - Zihao Zhou
- School of Materials Science and Engineering University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District Beijing 100083 China
| | - Yuzhen Zhao
- Key Laboratory of Organic Polymer Photoelectric MaterialsSchool of Science Xijing University, Xi'an Shaanxi Province 710123 China
| | - Daniele Ramella
- Department of ChemistryTemple University‐Beury Hall 1901, N. 13th Street Philadelphia, PA 19122 USA
| | - Yi Luan
- School of Materials Science and Engineering University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District Beijing 100083 China
- Key Laboratory of Organic Polymer Photoelectric MaterialsSchool of Science Xijing University, Xi'an Shaanxi Province 710123 China
| |
Collapse
|
16
|
Lee J, Kim HY, Oh K. Tandem Reaction Approaches to Isoquinolones from 2-Vinylbenzaldehydes and Anilines via Imine Formation-6π-Electrocyclization-Aerobic Oxidation Sequence. Org Lett 2020; 22:474-478. [PMID: 31880465 DOI: 10.1021/acs.orglett.9b04233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two distinctive transition-metal-promoted aerobic oxidation protocols have been developed for the synthesis of isoquinolones from 2-vinylbenzaldehydes and aniline derivatives. Thus, the one-pot tandem reaction sequence of imine formation, thermal 6π-electrocyclization, followed by either Cu(OAc)2-mediated or Pd(OAc)2-catalyzed aerobic oxidation protocol allowed the ready access to isoquinolone derivatives. The control experiments revealed that the 1,2-dihydroisoquinoline intermediates from the 6π-electrocyclization of 1-azatrienes were aerobically oxidized to isoquinolones in the presence of either Cu(OAc)2 or Pd(OAc)2 catalyst.
Collapse
Affiliation(s)
- Jiyeon Lee
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences , Chung-Ang University , 84 Heukseok-ro, Dongjak , Seoul 06974 , Republic of Korea
| | - Hun Young Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences , Chung-Ang University , 84 Heukseok-ro, Dongjak , Seoul 06974 , Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences , Chung-Ang University , 84 Heukseok-ro, Dongjak , Seoul 06974 , Republic of Korea
| |
Collapse
|
17
|
Yahuaca-Juárez B, González G, Ramírez-Morales MA, Alba-Betancourt C, Deveze-Álvarez MA, Mendoza-Macías CL, Ortiz-Alvarado R, Juárez-Ornelas KA, Solorio-Alvarado CR, Maruoka K. Iodine(III)-catalyzed benzylic oxidation by using the (PhIO)n/Al(NO3)3 system. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1707225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Berencie Yahuaca-Juárez
- Facultad de Químicofarmacobiología, Universidad Michoacana de San Nicolás de Hidalgo , Morelia , Michoacán , México
| | - Gerardo González
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Marco A. Ramírez-Morales
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Calara Alba-Betancourt
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Martha A. Deveze-Álvarez
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Claudia L. Mendoza-Macías
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Rafael Ortiz-Alvarado
- Facultad de Químicofarmacobiología, Universidad Michoacana de San Nicolás de Hidalgo , Morelia , Michoacán , México
| | - Kevin A. Juárez-Ornelas
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - César R. Solorio-Alvarado
- División de Ciencias Naturales y Exactas Departamento de Química, Universidad de Guanajuato , Gto , México
| | - Keiji Maruoka
- Department of Chemistry, Graduate School of Sciences, Kyoto University , Sakyo , Kyoto , Japan
| |
Collapse
|
18
|
Wang J, Ni B, Niu T, Ji F. C 3N 4-Photocatalyzed aerobic oxidative cleavage of CC bonds in alkynes with diazonium salts leading to two different aldehydes or esters in one pot. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01773f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C3N4-Photocatalyzed oxidative cleavage of CC bonds in alkynes with diazonium salts to obtain two different aldehydes or esters.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Bangqing Ni
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Tengfei Niu
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Fei Ji
- Department of Pharmaceutical Engineering
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
19
|
Jayram J, Xulu BA, Jeena V. Iodine/DMSO promoted oxidation of benzylic Csp3–H bonds to diketones – A mechanistic investigation. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Niesobski P, Martínez IS, Kustosz S, Müller TJJ. Sequentially Pd/Cu‐Catalyzed Alkynylation‐Oxidation Synthesis of 1,2‐Diketones and Consecutive One‐Pot Generation of Quinoxalines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900783] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patrik Niesobski
- Department Institut für Organische Chemie und Makromolekulare Chemie Heinrich‐Heine‐Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Ivette Santana Martínez
- Department Institut für Organische Chemie und Makromolekulare Chemie Heinrich‐Heine‐Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Sebastian Kustosz
- Department Institut für Organische Chemie und Makromolekulare Chemie Heinrich‐Heine‐Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Thomas J. J. Müller
- Department Institut für Organische Chemie und Makromolekulare Chemie Heinrich‐Heine‐Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
21
|
|
22
|
Luo J, Xuan K, Wang Y, Li F, Wang F, Pu Y, Li L, Zhao N, Xiao F. Aerobic oxidation of fluorene to fluorenone over Co–Cu bimetal oxides. NEW J CHEM 2019. [DOI: 10.1039/c9nj00499h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic oxidation of fluorene to fluorenone was achieved over Co–Cu bimetal oxides using O2 as an oxidant in the absence of a radical initiator. Co–Cu bimetal oxides showed better catalytic performance than CuO and Co3O4.
Collapse
Affiliation(s)
- Jing Luo
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| | - Keng Xuan
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| | - Yanxia Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| | - Feng Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| | - Feng Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| | - Yanfeng Pu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| | - Lei Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| | - Ning Zhao
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| | - Fukui Xiao
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| |
Collapse
|
23
|
Recent Advances in Homogeneous Metal-Catalyzed Aerobic C–H Oxidation of Benzylic Compounds. Catalysts 2018. [DOI: 10.3390/catal8120640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Csp3–H oxidation of benzylic methylene compounds is an established strategy for the synthesis of aromatic ketones, esters, and amides. The need for more sustainable oxidizers has encouraged researchers to explore the use of molecular oxygen. In particular, homogeneous metal-catalyzed aerobic oxidation of benzylic methylenes has attracted much attention. This account summarizes the development of this oxidative strategy in the last two decades, examining key factors such as reaction yields, substrate:catalyst ratio, substrate scope, selectivity over other oxidation byproducts, and reaction conditions including solvents and temperature. Finally, several mechanistic proposals to explain the observed results will be discussed.
Collapse
|
24
|
Jayram J, Jeena V. An iodine/DMSO-catalyzed sequential one-pot approach to 2,4,5-trisubstituted-1 H-imidazoles from α-methylene ketones. RSC Adv 2018; 8:37557-37563. [PMID: 35558600 PMCID: PMC9089320 DOI: 10.1039/c8ra07238h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
A sequential one-pot approach to 2,4,5-trisubstituted imidazoles has been developed from α-methylene ketones and aldehydes. This methodology employs air-moisture stable reaction conditions and an inexpensive iodine/DMSO system affording a diverse range of known and novel (substrate scope) 2,4,5-trisubstituted imidazoles in moderate to excellent yields. The iodine/DMSO system was extended to the domino convergent synthesis of two functionalized intermediates, benzil and benzaldehyde, to produce the final product.
Collapse
Affiliation(s)
- Janeeka Jayram
- School of Chemistry and Physics, University of KwaZulu-Natal Scottsville Pietermaritzburg 3209 South Africa
| | - Vineet Jeena
- School of Chemistry and Physics, University of KwaZulu-Natal Scottsville Pietermaritzburg 3209 South Africa
| |
Collapse
|
25
|
Wang L, Bie Z, Shang S, Li G, Niu J, Gao S. Cu‐Catalyzed Aerobic Oxidation of Alcohols with a Multi‐Functional NMI‐TEMPO. ChemistrySelect 2018. [DOI: 10.1002/slct.201800398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lianyue Wang
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physicsthe Chinese Academy of Sciences Dalian 116023 China
| | - Zhixing Bie
- Henan Key Laboratory of Polyoxometalate ChemistryInstitute of Molecular and Crystal EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 China
| | - Sensen Shang
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physicsthe Chinese Academy of Sciences Dalian 116023 China
| | - Guosong Li
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physicsthe Chinese Academy of Sciences Dalian 116023 China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate ChemistryInstitute of Molecular and Crystal EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 China
| | - Shuang Gao
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physicsthe Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
26
|
Nakai S, Uematsu T, Ogasawara Y, Suzuki K, Yamaguchi K, Mizuno N. Aerobic Oxygenation of Alkylarenes over Ultrafine Transition-Metal-Containing Manganese-Based Oxides. ChemCatChem 2018. [DOI: 10.1002/cctc.201701587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Satoru Nakai
- Department of Applied Chemistry, School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tsubasa Uematsu
- Department of Applied Chemistry, School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiyuki Ogasawara
- Department of Applied Chemistry, School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry, School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
27
|
Parella R, Babu SA. Pd(II)-Catalyzed Arylation and Intramolecular Amidation of γ-C(sp3)–H Bonds: En Route to Arylheteroarylmethane and Pyrrolidone Ring Annulated Furan/Thiophene Scaffolds. J Org Chem 2017; 82:7123-7150. [DOI: 10.1021/acs.joc.7b00582] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramarao Parella
- Department Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| |
Collapse
|
28
|
Urgoitia G, SanMartin R, Herrero MT, Domínguez E. Aerobic Cleavage of Alkenes and Alkynes into Carbonyl and Carboxyl Compounds. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03654] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Garazi Urgoitia
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Raul SanMartin
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - María Teresa Herrero
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Esther Domínguez
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| |
Collapse
|
29
|
Xu J, Shen C, Zhu X, Zhang P, Ajitha MJ, Huang KW, An Z, Liu X. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling. Chem Asian J 2016; 11:882-92. [DOI: 10.1002/asia.201501407] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Jun Xu
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 China
| | - Chao Shen
- College of Biology and Environmental Engineering; Zhejiang Shuren University; Hangzhou China
| | - Xiaolei Zhu
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 China
| | - Manjaly J. Ajitha
- KAUST Catalysis Center and Division of Physical Science and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Science and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
| | - Zhongfu An
- Department of Chemistry; National University of Singapore, 3 Science Drive 3; Singapore 117543 Singapore
| | - Xiaogang Liu
- Department of Chemistry; National University of Singapore, 3 Science Drive 3; Singapore 117543 Singapore
| |
Collapse
|
30
|
Guo B, Xue JY, Li HX, Tan DW, Lang JP. Design of recyclable TEMPO derivatives bearing an ionic liquid moiety and N,N-bidentate group for highly efficient Cu(i)-catalyzed conversion of alcohols into aldehydes and imines. RSC Adv 2016. [DOI: 10.1039/c6ra10373a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recyclable TEMPO derivatives carrying an ionic liquid moiety and N,N-bidentate group are designed for Cu(i)-catalyzed alcohol to aldehyde and imine conversion.
Collapse
Affiliation(s)
- Bin Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jiang-Yan Xue
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong-Xi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Da-Wei Tan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jian-Ping Lang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|