1
|
Tabuse H, Abe-Sato K, Kanazawa H, Yashiro M, Tamura Y, Kamitani M, Hitaka K, Gunji E, Mitani A, Kojima N, Oka Y. Discovery of Highly Potent and Selective Matrix Metalloproteinase-7 Inhibitors by Hybridizing the S1' Subsite Binder with Short Peptides. J Med Chem 2022; 65:13253-13263. [PMID: 36137271 DOI: 10.1021/acs.jmedchem.2c01088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1' subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes.
Collapse
Affiliation(s)
- Hideaki Tabuse
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kumi Abe-Sato
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Harumi Kanazawa
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Miyoko Yashiro
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yunoshin Tamura
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Masafumi Kamitani
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Emi Gunji
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Akiko Mitani
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Naoki Kojima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yusuke Oka
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| |
Collapse
|
2
|
Wang LL, Zhang B, Zheng MH, Xie YZ, Wang CJ, Jin JY. Matrix Metalloproteinases (MMPs) in Targeted Drug Delivery: Synthesis of a Potent and Highly Selective Inhibitor against Matrix Metalloproteinase- 7. Curr Top Med Chem 2021; 20:2459-2471. [PMID: 32703131 DOI: 10.2174/1568026620666200722104928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that play a key role in both physiological and pathological tissue degradation. MMPs have reportedly shown great potentials in the degradation of the Extracellular Matrix (ECM), have shown great potentials in targeting bioactive and imaging agents in cancer treatment. MMPs could provoke Epithelial to Mesenchymal Transition (EMT) of cancer cells and manipulate their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Therefore, targeting and particularly inhibiting MMPs within the tumor microenvironment is an effective strategy for cancer treatment. Based on this idea, different MMP inhibitors (MMPIs) have been developed to manipulate the tumor microenvironment towards conditions appropriate for the actions of antitumor agents. Studies are ongoing to improve the selectivity and specificity of MMPIs. Structural optimization has facilitated the discovery of selective inhibitors of the MMPs. However, so far no selective inhibitor for MMP-7 has been proposed. AIMS This study aims to comprehensively review the potentials and advances in applications of MMPs particularly MMP-7 in targeted cancer treatment approaches with the main focus on targeted drug delivery. Different targeting strategies for manipulating and inhibiting MMPs for the treatment of cancer are discussed. MMPs are upregulated at all stages of expression in cancers. Different MMP subtypes have shown significant targeting applicability at the genetic, protein, and activity levels in both physiological and pathophysiological conditions in a variety of cancers. The expression of MMPs significantly increases at advanced cancer stages, which can be used for controlled release in cancers in advance stages. METHODS Moreover, this study presents the synthesis and characteristics of a new and highly selective inhibitor against MMP-7 and discusses its applications in targeted drug delivery systems for therapeutics and diagnostics modalities. RESULTS Our findings showed that the structure of the inhibitor P3' side chains play the crucial role in developing an optimized MMP-7 inhibitor with high selectivity and significant degradation activities against ECM. CONCLUSION Optimized NDC can serve as a highly potent and selective inhibitor against MMP-7 following screening and optimization of the P3' side chains, with a Ki of 38.6 nM and an inhibitory selectivity of 575 of MMP-7 over MMP-1.
Collapse
Affiliation(s)
- Ling-Li Wang
- Centre of Chemical Biology, Department of Chemistry, Yanbian University, Yanji City, Jilin Province, 133002, China,National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China
| | - Bing Zhang
- Department of Nephrology, Central Hospital of Jiamusi, Heilongjiang Province 154002, China
| | - Ming-Hua Zheng
- Centre of Chemical Biology, Department of Chemistry, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Yu-Zhong Xie
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China,College of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chang-Jiang Wang
- Department of Nephrology, Central Hospital of Jiamusi, Heilongjiang Province 154002, China
| | - Jing-Yi Jin
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China
| |
Collapse
|