1
|
Das M, Joshi A, Devkar R, Seshadri S, Thakore S. Vitamin-H Channeled Self-Therapeutic P-gp Inhibitor Curcumin-Derived Nanomicelles for Targeting the Tumor Milieu by pH- and Enzyme-Triggered Hierarchical Disassembly. Bioconjug Chem 2022; 33:369-385. [PMID: 35015523 DOI: 10.1021/acs.bioconjchem.1c00614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An effective nanocarrier-mediated drug delivery to cancer cells primarily faces limitations like the presence of successive drug delivery barriers, insufficient circulation time, drug leakage, and decreased tumor penetration capacity. With the aim of addressing this paradox, a self-therapeutic, curcumin-derived copolymer was synthesized by conjugation with PEGylated biotin via enzyme- and acid-labile ester and acetal linkages. This copolymer is a prodrug of curcumin and self-assembles into ∼150-200 nm-sized nanomicelles; it is capable of encapsulating doxorubicin (DOX) and hence can be designated as self-therapeutic. pH- and enzyme-responsive linkages in the polymer skeleton assist in its hierarchical disassembly only in the tumor microenvironment. Further, the conjugation of biotin and poly(ethylene glycol) (PEG) imparts features of tumor specificity and improved circulation times to the nanocarrier. The dynamic light scattering (DLS) analysis supports this claim and demonstrates rapid swelling and disruption of micelles under acidic pH. UV-vis spectroscopy provided evidence of an accelerated acetal degradation at pH 4.0 and 5.0. The in vitro release studies revealed a controlled release of DOX under acidic conditions and curcumin release in response to the enzyme. The value of the combination index calculated on HepG2 cells was found to be <1, and hence, the drug pair curcumin and DOX acts synergistically for tumor regression. To prove the efficiency of acid-labile linkages and the prodrug strategy for effective cancer therapy, curcumin-derived polymers devoid of sensitive linkages were also prepared. The prodrug stimuli-responsive nanomicelles showed enhanced cell cytotoxicity and tumor penetration capability on HepG2 cells as well as drug-resistant MCF-7 cell lines and no effect on normal NIH/3T3 fibroblasts as compared to the nonresponsive micelles. The results were also supported by in vivo evidence on a hepatocellular carcinoma (HCC)-induced nude mice model. An evident decrease in MMP-2, MMP-9, and α-fetoprotein (AFP), the biomarkers specific to tumor progression, was observed along with metastasis upon treatment with the drug-loaded dual-responsive nanomicelles. These observations corroborated with the SGOT and SGPT data as well as the histoarchitecture of the liver tissue in mice.
Collapse
Affiliation(s)
- Manita Das
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Apeksha Joshi
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad 382 481, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.,Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| |
Collapse
|
2
|
Zhou C, Dong X, Song C, Cui S, Chen T, Zhang D, Zhao X, Yang C. Rational Design of Hyaluronic Acid-Based Copolymer-Mixed Micelle in Combination PD-L1 Immune Checkpoint Blockade for Enhanced Chemo-Immunotherapy of Melanoma. Front Bioeng Biotechnol 2021; 9:653417. [PMID: 33777920 PMCID: PMC7987940 DOI: 10.3389/fbioe.2021.653417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 01/10/2023] Open
Abstract
The application of combinational therapy breaks the limitation of monotherapy and achieves better clinical benefit for tumor therapy. Herein, a hyaluronic acid/Pluronic F68-based copolymer-mixed micelle was constructed for targeted delivery of chemotherapeutical agent docetaxel (PHDM) in combination with programmed cell death ligand-1(PD-L1) antibody. When PHDM+anti-PDL1 was injected into the blood system, PHDM could accumulate into tumor sites and target tumor cells via CD44-mediated endocytosis and possess tumor chemotherapy. While anti-PDL1 could target PD-L1 protein expressed on surface of tumor cells to the immune checkpoint blockade characteristic for tumor immunotherapy. This strategy could not only directly kill tumor cells but also improve CD8+ T cell level and facilitate effector cytokines release. In conclusion, the rational-designed PHDM+anti-PDL1 therapy strategy creates a new way for tumor immune-chemotherapy.
Collapse
Affiliation(s)
- Chaopei Zhou
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Xiuxiu Dong
- College Pharmacy, Jiamusi University, Jiamusi, China
| | | | - Shuang Cui
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Tiantian Chen
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Daji Zhang
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunrong Yang
- College Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
3
|
Synthesis and Characterization of the Novel Nε-9-Fluorenylmethoxycarbonyl-l-Lysine N-Carboxy Anhydride. Synthesis of Well-Defined Linear and Branched Polypeptides. Polymers (Basel) 2020; 12:polym12122819. [PMID: 33261159 PMCID: PMC7759796 DOI: 10.3390/polym12122819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
The synthesis of well-defined polypeptides exhibiting complex macromolecular architectures requires the use of monomers that can be orthogonally deprotected, containing primary amines that will be used as the initiator for the Ring Opening Polymerization (ROP) of N-carboxy anhydrides. The synthesis and characterization of the novel monomer Nε-9-Fluorenylmethoxycarbonyl-l-Lysine N-carboxy anhydride (Nε-Fmoc-l-Lysine NCA), as well as the novel linear Poly(Nε-Fmoc-l-Lys)n homopolypeptide and Poly(l-Lysine)78-block-[Poly(l-Lysine)10-graft-Poly(l-Histidine)15] block-graft copolypeptide, are presented. The synthesis of the graft copolypeptide was conducted via ROP of the Nε-Boc-l-Lysine NCA while using n-hexylamine as the initiator, followed by the polymerization of Nε-Fmoc-l-Lysine NCA. The last block was selectively deprotected under basic conditions, and the resulting ε-amines were used as the initiating species for the ROP of Nim-Trityl-l-Histidine NCA. Finally, the Boc- and Trt- groups were deprotected by TFA. High Vacuum Techniques were applied to achieve the conditions that are required for the synthesis of well-defined polypeptides. The molecular characterization indicated that the polypeptides exhibited high degree of molecular and compositional homogeneity. Finally, Dynamic Light Scattering, ζ-potential, and Circular Dichroism measurements were used in order to investigate the ability of the polypeptide to self-assemble in different conditions. This monomer opens avenues for the synthesis of polypeptides with complex macromolecular architectures that can define the aggregation behavior, and, therefore, can lead to the synthesis of "smart" stimuli-responsive nanocarriers for controlled drug delivery applications.
Collapse
|
4
|
Delorme V, Lichon L, Mahindad H, Hunger S, Laroui N, Daurat M, Godefroy A, Coudane J, Gary-Bobo M, Van Den Berghe H. Reverse poly(ε-caprolactone)-g-dextran graft copolymers. Nano-carriers for intracellular uptake of anticancer drugs. Carbohydr Polym 2020; 232:115764. [DOI: 10.1016/j.carbpol.2019.115764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 01/29/2023]
|
5
|
Chen F, Huang G, Huang H. Preparation and application of dextran and its derivatives as carriers. Int J Biol Macromol 2019; 145:827-834. [PMID: 31756474 DOI: 10.1016/j.ijbiomac.2019.11.151] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
As a natural and renewable biological macromolecule, dextran not only has excellent biodegradability, but also has good biocompatibility. Dextran and its derivatives are functional polymers for the construction of targeted drug delivery systems. Herein, the application of dextran as prodrug and nanoparticle/nanogel/microsphere/micelle carrier for targeting drug delivery system was summarized. It is clarified that dextran is an important biomaterial with application value.
Collapse
Affiliation(s)
- Fang Chen
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| |
Collapse
|
6
|
Wang S, Liu M, Wang W, Li T, Cui M, Sun W, Yang X, Song S. Preparation and Evaluation of mPEG-PLGA Block Copolymer Micelles Loaded with a Sarsasapogenin Derivative. AAPS PharmSciTech 2019; 20:280. [PMID: 31399832 DOI: 10.1208/s12249-019-1491-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Sarsasapogenin derivative 5n (SGD 5n) is a new compound with potent antitumor efficacy, but the low solubility severely affects its absorption and bioavailability. Therefore, the SGD 5n-loaded mPEG-PLGA block copolymer micelles were developed to improve the value of SGD 5n in clinical application. The polymeric micelles were prepared by an organic solvent evaporation method, and the encapsulation efficiency (EE), drug loading (DL), critical micelle concentrations (CMC), morphology, particle size, and zeta potential were determined. The cytotoxicity was examined by the MTT assay, and the cellular uptake study was performed by confocal laser scanning microscopy. A model of tumor-bearing mouse was established to study the antitumor activity in vivo. The results demonstrated that the particle size of the prepared micelle was 124.6 ± 9.6 nm, the encapsulation efficiency was 82.0 ± 2.9%, and the drug loading was 8.3 ± 0.4%. The results of cytotoxicity and cellular uptake demonstrated that the SGD 5n-loaded micelles could efficiently enter tumor cells, and the cellular uptake of SGD 5n presented concentration and time dependence. This study demonstrated that the prepared SGD 5n-loaded polymeric micelles had significant antitumor activity and provided a basis for clinical development of new compound SGD 5n.
Collapse
|
7
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
8
|
Sun X, Zhang J, Yang C, Huang Z, Shi M, Pan S, Hu H, Qiao M, Chen D, Zhao X. Dual-Responsive Size-Shrinking Nanocluster with Hierarchical Disassembly Capability for Improved Tumor Penetration and Therapeutic Efficacy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11865-11875. [PMID: 30830746 DOI: 10.1021/acsami.8b21580] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is generally known that, for nanoparticles in cancer therapy, sufficient tumor penetration needs a minor particle size, while long in vivo circulation time needs a larger particle size. It is hard to balance them because they are standing on either side of a seesaw. To address these two different requirements, a dual-responsive size-shrinking nanocluster can self-adaptively respond to a complicated tumor microenvironment and transform its particulate property to overcome sequential in vivo barriers and reach a preferable antitumor activity. The nanocluster (RPSPT@SNCs) could preferentially accumulate into tumor tissue and dissociate under extracellular matrix metalloproteinase-2 (MMP-2) to release small-sized micelle formulations (RPSPTs). RPSPT possesses favorable tumor penetration and tumor targeting capability to deliver the antitumor agent paclitaxel (PTX) into deep regions of solid tumor. The intracellular redox microenvironment can also accelerate drug accumulation. The prepared RPSPT@SNCs possesses enhanced cell cytotoxicity and tumor penetration capability on MCF-7 cells and a favorable antitumor activity on the xenograft tumor mouse model.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Jiulong Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Chunrong Yang
- College of Pharmacy , Jiamusi University , 148 Xuefu Street , Jiamusi 154007 , Heilongjiang , P.R. China
| | - Ziyuan Huang
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Menghao Shi
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Shuang Pan
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Haiyang Hu
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Mingxi Qiao
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Dawei Chen
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| | - Xiuli Zhao
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , P.R. China
| |
Collapse
|
9
|
Huang G, Huang H. Application of dextran as nanoscale drug carriers. Nanomedicine (Lond) 2018; 13:3149-3158. [DOI: 10.2217/nnm-2018-0331] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dextran is a kind of biocompatible, nontoxic and nonimmunogenic biological substance that has been widely used in drug-delivery systems. With further research and understanding of dextran and its derivatives, people can more precisely control the sequence of dextran by chemical and biosynthetic methods as needed, and modify various structures to improve the properties of dextran, such as hydrophilicity, hydrophobicity, temperature sensitivity, pH sensitivity and ionic strength sensitivity, which will further expand the application of dextran and its derivatives in drug-delivery systems. Herein, the application of dextran and its derivatives in gene transfection and drug delivery was summarized and analyzed, and the problems were studied. At the same time, its application prospects are forecasted.
Collapse
Affiliation(s)
- Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Hualiang Huang
- School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
10
|
Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility. Carbohydr Polym 2018; 202:513-522. [DOI: 10.1016/j.carbpol.2018.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/27/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
|
11
|
Du X, Yin S, Zhou F, Du X, Xu J, Gu X, Wang G, Li J. Reduction-sensitive mixed micelles for selective intracellular drug delivery to tumor cells and reversal of multidrug resistance. Int J Pharm 2018; 550:1-13. [DOI: 10.1016/j.ijpharm.2018.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/31/2018] [Accepted: 08/12/2018] [Indexed: 12/17/2022]
|
12
|
Jiao Z, Fan W, Wang Z, Wang X. Synthesis of CO2-philic amphiphilic block copolymers by RAFT polymerization and its application on forming drug-loaded micelles using ScCO2 evaporation method. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Jafarzadeh-Holagh S, Hashemi-Najafabadi S, Shaki H, Vasheghani-Farahani E. Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J Colloid Interface Sci 2018; 523:179-190. [PMID: 29621645 DOI: 10.1016/j.jcis.2018.02.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Nanocarrier-based drug delivery systems have been explored extensively in cancer therapy. Among the vast number of different nanocarrier systems applied to deliver chemotherapeutics to cancer tumor, intelligent systems which deliver drug to various sites in the body have attracted considerable attentions. Finding a specific stimulant that triggers the carrier to release its payload in the target tissue is a key parameter for efficacy of delivery systems. Acidic pH of cancer tumor helps a pH-sensitive carrier to release drug at the tumor site. In this study, a pH-sensitive mixed micellar system was developed using Dextran-Stearic Acid (Dex-SA) and Dextran-Histidine (Dex-His) conjugated polymers to deliver doxorubicin (DOX) to cancer cells. Drug release from this micellar system showed higher release rate at acidic pH than that of in neutral environment, where the release was 56 and 76% at pH 7.4 and acidic pH, respectively. Finally, the in vitro cytotoxicity and cell uptake of DOX-loaded micelles and free DOX on U87 MG cell line showed that micellar systems had more anti-proliferation effect and uptake compared to free drug.
Collapse
Affiliation(s)
- Samira Jafarzadeh-Holagh
- Biomedical Engineering Division, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Division, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran
| | - Hossein Shaki
- Biomedical Engineering Division, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Division, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran.
| |
Collapse
|
14
|
Abbasi S, Yousefi G, Tamaddon AM. Polyacrylamide–b-copolypeptide hybrid copolymer as pH-responsive carrier for delivery of paclitaxel: Effects of copolymer composition on nanomicelles properties, loading efficiency and hemocompatibility. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
16
|
Iakobson OD, Dobrodumov AV, Saprykina NN, Shevchenko NN. Dextran Nanoparticles Cross-Linked in Aqueous and Aqueous/Alcoholic Media. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Olga D. Iakobson
- Institute of Macromolecular Compounds; Russian Academy of Sciences; Bolshoy pr., 31 Saint Petersburg 199004 Russia
| | - Anatoly V. Dobrodumov
- Institute of Macromolecular Compounds; Russian Academy of Sciences; Bolshoy pr., 31 Saint Petersburg 199004 Russia
| | - Natalia N. Saprykina
- Institute of Macromolecular Compounds; Russian Academy of Sciences; Bolshoy pr., 31 Saint Petersburg 199004 Russia
| | - Natalia N. Shevchenko
- Institute of Macromolecular Compounds; Russian Academy of Sciences; Bolshoy pr., 31 Saint Petersburg 199004 Russia
| |
Collapse
|
17
|
Mandracchia D, Rosato A, Trapani A, Chlapanidas T, Montagner IM, Perteghella S, Di Franco C, Torre ML, Trapani G, Tripodo G. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1245-1254. [DOI: 10.1016/j.nano.2017.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022]
|
18
|
Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Acta Biomater 2017; 50:381-395. [PMID: 27956367 DOI: 10.1016/j.actbio.2016.12.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/20/2016] [Accepted: 12/07/2016] [Indexed: 01/13/2023]
Abstract
Multidrug resistance (MDR) of tumor cells is becoming the main reason for the failure of chemotherapy and P-glycoprotein (P-gp) mediated drug efflux has demonstrated to be the key factor for MDR. To address this issue, a novel pH-responsive mixed micelles drug delivery system composed of dextran-g-poly(lactide-co-glycolide)-g-histidine (HDP) and folate acid-D-α-tocopheryl polyethylene glycol 2000 (FA-TPGS2K) copolymers has been designed for the delivery of antitumor agent, paclitaxel (PTX) via FA-receptor mediated cell endocytosis, into PTX-resistant breast cancer MCF-7 cells (MCF-7/PTX). PTX-loaded FA-TPGS2K/HDP mixed micelles were characterized to have a small size distribution, high loading content and excellent pH-responsive drug release profiles. Compared with HDP micelles, FA-TPGS2K/HDP mixed micelles showed a higher cytotoxicity against MCF-7 and MCF-7/PTX cells due to the synergistic effect of FA-receptor mediated cell endocytosis, pH-responsive drug release and TPGS mediated P-gp inhibition. P-gp expression level, ATP content and mitochondrial membrane potential change have been measured, the results indicated blank FA-TPGS2K/HDP mixed micelles could inhibit the P-gp activity by reducing the mitochondrial membrane potential and depleting ATP content but not down-regulating the P-gp expression. In vivo antitumor activities demonstrated FA-TPGS2K/HDP mixed micelles could reach higher antitumor activity compared with HDP micelles for MCF-7/PTX tumor cells. Histological assay also indicated that FA-TPGS2K/HDP mixed micelles showed strongly apoptosis inducing effect, anti-proliferation effect and anti-angiogenesis effect. All these evidences demonstrated this pH-sensitive FA-TPGS2K/HDP micelle-based drug delivery system is a promising approach for overcoming MDR. STATEMENT OF SIGNIFICANCE In this work, a novel FA-TPGS2K copolymer has been synthesized and used it to construct mixed micelles with HDP copolymer to overcome MDR effect. Furthermore, a series in vitro and in vivo evaluations have been made, which supported enough evidences for the efficient delivery of antitumor drug to MDR cells.
Collapse
|
19
|
Yin S, Chang L, Li T, Wang G, Gu X, Li J. Construction of novel pH-sensitive hybrid micelles for enhanced extracellular stability and rapid intracellular drug release. RSC Adv 2016. [DOI: 10.1039/c6ra23050d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Novel pH-sensitive hybrid micelles with high entrapment efficiency were constructed to realize rapid intracellular drug release without premature release.
Collapse
Affiliation(s)
- Shaoping Yin
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Liang Chang
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Tie Li
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Guangji Wang
- Center of Pharmacokinetics
- Key Laboratory of Drug Metabolism and Pharmacokinetics
- China Pharmaceutical University
- Nanjing
- China
| | - Xiaochen Gu
- College of Pharmacy
- University of Manitoba
- Winnipeg
- Canada R3E 0T5
| | - Juan Li
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|