1
|
Baldissara P, Silvestri D, Pieri GM, Mazzitelli C, Arena A, Maravic T, Monaco C. Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite. Polymers (Basel) 2022; 14:polym14235301. [PMID: 36501696 PMCID: PMC9737195 DOI: 10.3390/polym14235301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
This study aims to develop a restorative material having such mechanical and adhesive properties that it can be used both as a reconstruction material and as a luting cement. The experimental core build-up composite (CBC) was derived from a self-adhesive cement by the modification of its chemical formula, requiring the use of dedicated dentin and ceramic primers. The adhesive properties to zirconia and dentin were analyzed with a micro-Shear Bond Strength test (mSBS). The mechanical properties were analyzed by a flexural strength test. The results were compared with those obtained for other commercially available cements and core build-up materials, both before and after addition of 2 wt.% fluorographene. The CBC obtained average values in the mSBS of 49.7 ± 4.74 MPa for zirconia and 32.2 ± 4.9 MPa for dentin, as well as values of 110.9 ± 9.3 MPa for flexural strength and 6170.8 ± 703.2 MPa for Young's modulus. The addition of fluorographene, while increasing the Young's modulus of the core build-up composite by 10%, did not improve the adhesive capabilities of the primers and cement on either zirconia or dentin. The CBC showed adhesive and mechanical properties adequate both for a restoration material and a luting cement. The addition of 2 wt.% fluorographene was shown to interfere with the polymerization reaction of the material, suggesting the need for further studies.
Collapse
Affiliation(s)
- Paolo Baldissara
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40125 Bologna, Italy
- Correspondence: (P.B.); (D.S.)
| | - Davide Silvestri
- Department of Surgery, Medical, Dentistry and Morphological Sciences with Transplant Interest, Oncology and Regenerative Medicine (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence: (P.B.); (D.S.)
| | - Giovanni Maria Pieri
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40125 Bologna, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40125 Bologna, Italy
| | - Antonio Arena
- Department of Surgery, Medical, Dentistry and Morphological Sciences with Transplant Interest, Oncology and Regenerative Medicine (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40125 Bologna, Italy
| | - Carlo Monaco
- Department of Surgery, Medical, Dentistry and Morphological Sciences with Transplant Interest, Oncology and Regenerative Medicine (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
2
|
Xiao X, Wang X, Liu L, Chen C, Sha A, Li J. Effects of three graphene-based materials on the growth and photosynthesis of Brassica napus L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113383. [PMID: 35276609 DOI: 10.1016/j.ecoenv.2022.113383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The environmental safety and threats of graphene-based materials (GBMs) to the agroecosystem have attracted increasing attention in recent years. However, the mechanisms underlying the effects of GBMs on plants remain unclear. Here, we investigated the phytotoxicity of reduced graphene oxide (RGO), graphene oxide (GO) and amine-functionalized graphene (G-NH2) on Brassica napus L. The results revealed that RGO impaired photosynthesis mainly by decreasing the chlorophyll content and Rubisco activity. A further gene-level analysis suggested that this effect of RGO might be due to its toxicity on sulfate transmembrane transporter and nitrogen metabolism, which ultimately led to nutrient imbalance. However, GO directly damaged the photosystem by disrupting the chloroplast structure, and a decrease in Rubisco activity indicated that GO also inhibits carbon fixation. Further gene-level analysis demonstrated that GO has toxicity on the chloroplast membrane, photosystem, photosynthethic electron transport and F-type ATPase. In addition, G-NH2 at 10-1000 mg L-1 showed no significant toxicity. These findings shed light on the potential mechanism for the toxicity of GBMs on plants for risk assessment.
Collapse
Affiliation(s)
- Xiaolu Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| | - Xiuping Wang
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Lixin Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| | - Chang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| | - Aihua Sha
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434023, China
| | - Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China.
| |
Collapse
|
3
|
Guo Z, Chakraborty S, Monikh FA, Varsou DD, Chetwynd AJ, Afantitis A, Lynch I, Zhang P. Surface Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects. Adv Biol (Weinh) 2021; 5:e2100637. [PMID: 34288601 DOI: 10.1002/adbi.202100637] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Indexed: 01/08/2023]
Abstract
The increasing exploitation of graphene-based materials (GBMs) is driven by their unique properties and structures, which ignite the imagination of scientists and engineers. At the same time, the very properties that make them so useful for applications lead to growing concerns regarding their potential impacts on human health and the environment. Since GBMs are inert to reaction, various attempts of surface functionalization are made to make them reactive. Herein, surface functionalization of GBMs, including those intentionally designed for specific applications, as well as those unintentionally acquired (e.g., protein corona formation) from the environment and biota, are reviewed through the lenses of nanotoxicity and design of safe materials (safe-by-design). Uptake and toxicity of functionalized GBMs and the underlying mechanisms are discussed and linked with the surface functionalization. Computational tools that can predict the interaction of GBMs behavior with their toxicity are discussed. A concise framing of current knowledge and key features of GBMs to be controlled for safe and sustainable applications are provided for the community.
Collapse
Affiliation(s)
- Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Swaroop Chakraborty
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Fazel Abdolahpur Monikh
- Department of Environmental & Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland
| | - Dimitra-Danai Varsou
- School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia, 1046, Cyprus
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
4
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|
5
|
Chronopoulos DD, Bakandritsos A, Pykal M, Zbořil R, Otyepka M. Chemistry, properties, and applications of fluorographene. APPLIED MATERIALS TODAY 2017; 9:60-70. [PMID: 29238741 PMCID: PMC5721099 DOI: 10.1016/j.apmt.2017.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 05/23/2023]
Abstract
Fluorographene, formally a two-dimensional stoichiometric graphene derivative, attracted remarkable attention of the scientific community due to its extraordinary physical and chemical properties. We overview the strategies for the preparation of fluorinated graphene derivatives, based on top-down and bottom-up approaches. The physical and chemical properties of fluorographene, which is considered as one of the thinnest insulators with a wide electronic band gap, are presented. Special attention is paid to the rapidly developing chemistry of fluorographene, which was advanced in the last few years. The unusually high reactivity of fluorographene, which can be chemically considered perfluorinated hydrocarbon, enables facile and scalable access to a wide portfolio of graphene derivatives, such as graphene acid, cyanographene and allyl-graphene. Finally, we summarize the so far reported applications of fluorographene and fluorinated graphenes, spanning from sensing and bioimaging to separation, electronics and energy technologies.
Collapse
|
6
|
Chen L, Wang C, Li H, Qu X, Yang ST, Chang XL. Bioaccumulation and Toxicity of 13C-Skeleton Labeled Graphene Oxide in Wheat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10146-10153. [PMID: 28771335 DOI: 10.1021/acs.est.7b00822] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Graphene nanomaterials have many diverse applications, but are considered to be emerging environmental pollutants. Thus, their potential environmental risks and biosafety are receiving increased attention. Bioaccumulation and toxicity evaluations in plants are essential for biosafety assessment. In this study, 13C-stable isotope labeling of the carbon skeleton of graphene oxide (GO) was applied to investigate the bioaccumulation and toxicity of GO in wheat. Bioaccumulation of GO was accurately quantified according to the 13C/12C ratio. Wheat seedlings were exposed to 13C-labeled GO at 1.0 mg/mL in nutrient solution for 15 d. 13C-GO accumulated predominantly in the root with a content of 112 μg/g at day 15, hindered the development and growth of wheat plants, disrupted root structure and cellular ultrastructure, and promoted oxidative stress. The GO that accumulated in the root showed extremely limited translocation to the stem and leaves. During the experimental period, GO was excreted slowly from the root. GO inhibited the germination of wheat seeds at high concentrations (≥0.4 mg/mL). The mechanism of GO toxicity to wheat may be associated with oxidative stress induced by GO bioaccumulation, reflected by the changes of malondialdehyde concentration, catalase activity, and peroxidase activity. The results demonstrate that 13C labeling is a promising method to investigate environmental impacts and fates of carbon nanomaterials in biological systems.
Collapse
Affiliation(s)
- Lingyun Chen
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University , Chengdu 610041, P. R. China
| | - Chenglong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Hongliang Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University , Chengdu 610041, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xiulong Qu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University , Chengdu 610041, P. R. China
| | - Sheng-Tao Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University , Chengdu 610041, P. R. China
| | - Xue-Ling Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
7
|
Yousaf M, Huang H, Li P, Wang C, Yang Y. Fluorine Functionalized Graphene Quantum Dots as Inhibitor against hIAPP Amyloid Aggregation. ACS Chem Neurosci 2017; 8:1368-1377. [PMID: 28230965 DOI: 10.1021/acschemneuro.7b00015] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrillar deposits of the human islet amyloid polypeptide (hIAPP) are considered as a root of Type II diabetes mellitus. Fluorinated graphene quantum dots (FGQDs) are new carbon nanomaterials with unique physicochemical properties containing highly electronegative F atoms. Herein we report a single step synthesis method of FGQDs with an inhibitory effect on aggregation and cytotoxicity of hIAPP in vitro. Highly fluorescent and water dispersible FGQDs, less than 3 nm in size, were synthesized by the microwave-assisted hydrothermal method. Efficient inhibition capability of FGQDs to amyloid aggregation was demonstrated. The morphologies of hIAPP aggregates were observed to change from the entangled long fibrils to short thin fibrils and amorphous aggregates in the presence of FGQDs. In thioflavin T fluorescence analysis, inhibited aggregation with prolonged lag time and reduced fluorescence intensity at equilibrium were observed when hIAPP was incubated together with FGQDs. Circular dichroism spectrum results reveal that FGQDs could inhibit conformational transition of the peptide from native structure to β-sheets. FGQDs could also rescue the cytotoxicity of INS-1 cells induced by hIAPP in a dose dependent manner. This study could be beneficial for design and preparation of inhibitors for amyloids, which is important for prevention and treatment of amyloidosis.
Collapse
Affiliation(s)
- Maryam Yousaf
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| | - Huan Huang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ping Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| |
Collapse
|
8
|
The rational designed graphene oxide-Fe 2O 3 composites with low cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:659-666. [PMID: 28024635 DOI: 10.1016/j.msec.2016.11.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/20/2016] [Accepted: 11/26/2016] [Indexed: 01/28/2023]
Abstract
Novel two-dimensional materials with a layered structure are of special interest for a variety of promising applications. In current research, the nanostructured graphene oxide-Fe2O3 composite (GO-Fe2O3) was firstly obtained via a carefully elaborated approach of vacuum freeze-drying. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images revealed that α-Fe2O3 nanoparticles loaded well on the surfaces of graphene. A series of characterization were performed to further elucidate the as-obtained nanomaterial's physicochemical properties. These results suggested the current route could be further extended to obtain the other kinds of two-dimensional materials based composites. For the sake of extending the potential application of herein achieved graphene composites, its cytotoxicity assessment on HeLa cells was systematically investigated. CCK-8 assay in HeLa cells treated by GO-Fe2O3 showed dose- (1-100μg/ml) and time- (24-48h) dependent cytotoxicity, which was comparable to that of GO. The excess generation of intracellular reactive oxygen species (ROS) induced by these nanomaterials was responsible for the cytotoxicity. TEM analysis vividly illustrated GO-Fe2O3 internalized by HeLa cells in endomembrane compartments such as lysosomes, and degraded through autophagic pathway. The detrimental biological consequence accompanied by cell internalization was limited. Based on the above results, it expected to render useful information for the development of new and popular strategies to design graphene-based composites, as well as deep insights into the mechanism of graphene-based composites cytotoxicity for further potential application.
Collapse
|
9
|
Lalwani G, D'Agati M, Khan AM, Sitharaman B. Toxicology of graphene-based nanomaterials. Adv Drug Deliv Rev 2016; 105:109-144. [PMID: 27154267 PMCID: PMC5039077 DOI: 10.1016/j.addr.2016.04.028] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/28/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023]
Abstract
Graphene based nanomaterials possess remarkable physiochemical properties suitable for diverse applications in electronics, telecommunications, energy and healthcare. The human and environmental exposure to graphene-based nanomaterials is increasing due to advancements in the synthesis, characterization and large-scale production of graphene and the subsequent development of graphene based biomedical and consumer products. A large number of in vitro and in vivo toxicological studies have evaluated the interactions of graphene-based nanomaterials with various living systems such as microbes, mammalian cells, and animal models. A significant number of studies have examined the short- and long-term in vivo toxicity and biodistribution of graphene synthesized by variety of methods and starting materials. A key focus of these examinations is to properly associate the biological responses with chemical and morphological properties of graphene. Several studies also report the environmental and genotoxicity response of pristine and functionalized graphene. This review summarizes these in vitro and in vivo studies and critically examines the methodologies used to perform these evaluations. Our overarching goal is to provide a comprehensive overview of the complex interplay of biological responses of graphene as a function of their physiochemical properties.
Collapse
Affiliation(s)
- Gaurav Lalwani
- Theragnostic Technologies Inc., Long Island High Technology Incubator Suite 123, Stony Brook, NY 11790, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | - Michael D'Agati
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Amit Mahmud Khan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Balaji Sitharaman
- Theragnostic Technologies Inc., Long Island High Technology Incubator Suite 123, Stony Brook, NY 11790, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| |
Collapse
|