1
|
Shenbagavalli K, Suganya K, Sundaram E, Murugan M, Sivasamy Vasantha V. First organic fluorescence immunoassay for the detection of Enterobacter cloacae in food matrixes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3927-3937. [PMID: 38832637 DOI: 10.1039/d4ay00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
For the first time, a novel fluorescent moiety, 2-amino-4-(7-formyl-1,8-dihydropyren-2-yl)-7-hydroxy-4H-chromene-3-carbonitrile (ACC), was synthesized by an ultrasonication method. The synthesis of this moiety was confirmed via structural elucidation using FTIR and NMR spectroscopy techniques. Further, photophysical properties of the fluorescent moiety were tested using UV-visible and emission spectroscopy techniques. In this case, the moiety was tagged with an antibody of Enterobacter cloacae via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide (EDC/NHS) coupling and applied as a sensing element for the detection of Enterobacter cloacae (E. cloacae) by UV-visible and emission spectroscopy techniques. The developed fluorescent sensor detected E. cloacae via a FRET mechanism. Under optimized conditions, ACC-anti-E. cloacae detected E. cloacae in the linear range from 101 to 1010 CFU mL-1 with a limit of detection (LOD) of 10.55 CFU mL-1. The developed sensor was applied for the detection of E. cloacae in food samples such as orange, pomegranate, milk, rice, tomato, potato and onion.
Collapse
Affiliation(s)
- Kathiravan Shenbagavalli
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai- 625021, TamilNadu, India.
| | - Kannan Suganya
- Central Research Laboratory, Vinayaka Mission's,Medical College and Hospital, Vinayaka Mission's Research Foundation, Karaikal- 609609, India
| | - Ellairaja Sundaram
- Depatment of Chemistry, Vivekanada College, Tiruvedakam, West, Madurai- 625234, Tamilnadu, India
| | - Marudhamuthu Murugan
- Department of Microbial Technology, School of Biological Science, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai- 625021, TamilNadu, India.
| |
Collapse
|
2
|
Wu P, Xue F, Zuo W, Yang J, Liu X, Jiang H, Dai J, Ju Y. A Universal Bacterial Catcher Au-PMBA-Nanocrab-Based Lateral Flow Immunoassay for Rapid Pathogens Detection. Anal Chem 2022; 94:4277-4285. [PMID: 35244383 DOI: 10.1021/acs.analchem.1c04909] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In traditional lateral flow immunoassays (LFIA) for pathogens detection, capture antibody (CA) is necessary and usually conjugated to Au nanoparticles (NPs) in order to label the target analyte. However, the acquisition process of the Au-CA nanoprobe is relatively complicated and costly, which will limit the application of LFIA. Herein, p-mercaptophenylboronic acid-modified Au NPs (namely Au-PMBA nanocrabs), were synthesized and applied for a new CA-independent LFIA method. The stable Au-PMBA nanocrabs showed outstanding capability to capture both Gram-negative bacteria and Gram-positive bacteria through covalent bonding. The acquired Au-PMBA-bacteria complexes were dropped onto the strip, and then captured by the detection antibody on the test line (T-line). Take Escherichia coli O157:H7 as an example, the gray value of T-line was proportional to the bacteria concentration and the linear range was 103-107 cfu·mL-1. This CA-independent strategy exhibited higher sensitivity than the traditional CA-dependent double antibody sandwich method, because detection limit of the former one was 103 cfu·mL-1 only by visual observation, which was reduced by 3 orders of magnitude. Besides, this platform successfully screened E. coli O157:H7 in four food samples with recoveries ranging from 90.25% to 107.25%. This CA-independent LFIA showed great advantages and satisfactory potential for rapid foodborne pathogens detection in real samples.
Collapse
Affiliation(s)
- Pengcheng Wu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanchao Zuo
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Xinmei Liu
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
4
|
Wang Z, Yao X, Zhang Y, Wang R, Ji Y, Sun J, Zhang D, Wang J. Functional nanozyme mediated multi-readout and label-free lateral flow immunoassay for rapid detection of Escherichia coli O157:H7. Food Chem 2020; 329:127224. [PMID: 32516716 DOI: 10.1016/j.foodchem.2020.127224] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/15/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022]
Abstract
To overcome the drawbacks of antibody labeling dependence and single-readout system in the conventional lateral flow immunoassays (LFIAs) as well as the non-targeted combination of new capture agents reported recently for pathogen detection, in this work, a multi-readout and label-free LFIA was proposed for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7) based on a nanozyme-bacteria-antibody sandwich pattern. A type of functional nanozyme-mannose modified Prussian blue (man-PB), was introduced as the recognition agent as well as signal indicator. Apart from original signal intensity on the T-line, the peroxidase-like catalytic activity-driven generation of colorimetric signal could be used as another format of quantitation. Importantly, such LFIA could exhibit excellent performance for target pathogens detection separately with a quantitative range of 102-108 cfu·mL-1 and a low detection limit of 102 cfu·mL-1 based on different readout formats, indicating the application potential of the proposed LFIA in real samples.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xiaolin Yao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yongzhi Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Rivas M, Blanco-López MC. Magnetic Lateral Flow Immunoassays. Diagnostics (Basel) 2020; 10:E288. [PMID: 32397264 PMCID: PMC7278001 DOI: 10.3390/diagnostics10050288] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
A new generation of magnetic lateral flow immunoassays is emerging as powerful tool for diagnostics. They rely on the use of magnetic nanoparticles (MNP) as detecting label, replacing conventional gold or latex beads. MNPs can be sensed and quantified by means of external devices, allowing the development of immunochromatographic tests with a quantitative capability. Moreover, they have an added advantage because they can be used for immunomagnetic separation (IMS), with improvements in selectivity and sensitivity. In this paper, we have reviewed the current knowledge on magnetic-lateral flow immunoassay (LFIA), coupled with both research and commercially available instruments. The work in the literature has been classified in two categories: optical and magnetic sensing. We have analysed the type of magnetic nanoparticles used in each case, their size, coating, crystal structure and the functional groups for their conjugation with biomolecules. We have also taken into account the analytical characteristics and the type of transduction. Magnetic LFIA have been used for the determination of biomarkers, pathogens, toxins, allergens and drugs. Nanocomposites have been developed as alternative to MNP with the purpose of sensitivity enhancement. Moreover, IMS in combination with other detection principles could also improve sensitivity and limit of detection. The critical analysis in this review could have an impact for the future development of magnetic LFIA in fields requiring both rapid separation and quantification.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - M. Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| |
Collapse
|
6
|
Tominaga T, Ishii M. Detection of microorganisms with lateral flow test strips. METHODS IN MICROBIOLOGY 2020. [DOI: 10.1016/bs.mim.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Zheng H, Han F, Lin H, Cao L, Pavase TR, Sui J. Preparation of a novel polyethyleneimine functionalized sepharose-boronate affinity material and its application in selective enrichment of food borne pathogenic bacteria. Food Chem 2019; 294:468-476. [DOI: 10.1016/j.foodchem.2019.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 11/25/2022]
|
8
|
Wang Z, Yao X, Wang R, Ji Y, Yue T, Sun J, Li T, Wang J, Zhang D. Label-free strip sensor based on surface positively charged nitrogen-rich carbon nanoparticles for rapid detection of Salmonella enteritidis. Biosens Bioelectron 2019; 132:360-367. [DOI: 10.1016/j.bios.2019.02.061] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
|
9
|
Bu T, Huang Q, Yan L, Zhang W, Dou L, Huang L, Yang Q, Zhao B, Yang B, Li T, Wang J, Zhang D. Applicability of biological dye tracer in strip biosensor for ultrasensitive detection of pathogenic bacteria. Food Chem 2019; 274:816-821. [DOI: 10.1016/j.foodchem.2018.09.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 08/08/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
|
10
|
Development of Lateral Flow Assay for Point-of-Care Diagnosis of Trypanosomosis in Equines. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Razo SC, Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Dzantiev BB. Double-enhanced lateral flow immunoassay for potato virus X based on a combination of magnetic and gold nanoparticles. Anal Chim Acta 2018; 1007:50-60. [PMID: 29405988 DOI: 10.1016/j.aca.2017.12.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023]
Abstract
This study presents the joint use of magnetic nanoparticles (MNPs) and gold nanoparticles (GNPs) for double enhancement in a lateral flow immunoassay (LFIA). The study realizes two types of enhancement: (1) increasing the concentration of analytes in the samples using conjugates of MNPs with specific antibodies and (2) increasing the visibility of the label through MNP aggregation caused by GNPs. The proposed strategy was implemented using a LFIA for potato virus X (PVX), a significant potato pathogen. MNPs conjugated with biotinylated antibodies specific to PVX and GNPs conjugated with streptavidin were synthesized and characterized. The LFIAs with and without the proposed enhancements were compared. The double-enhanced LFIA achieved the highest sensitivity, equal to 0.25 ng mL-1 and 32 times more sensitivity than the non-enhanced LFIA (detection limit: 8 ng mL-1). LFIAs using one of the types of amplification (magnetic concentration without GNPs-causing aggregation or MNP aggregation without the concentration stage) showed intermediate levels of sensitivity. The double-enhanced LFIA was successfully used for PVX detection in potato leaves. The results for PVX detection in the infected plants were similar for the double-enhanced LFIA developed and the conventional LFIA based on the GNP conjugates; however, the new system provided significant coloring enhancement. This study confirmed that a simple combination of MNPs and GNPs has great potential for high-sensitivity detection and could possibly be adopted for LFIAs of other compounds.
Collapse
Affiliation(s)
- Shyatesa C Razo
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; Agricultural-Technological Institute, Peoples' Friendship University of Russia, Mikluho-Maklaya Street 8/2, 117198 Moscow, Russia
| | - Vasily G Panferov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Irina V Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Yuri A Varitsev
- A.G. Lorch All-Russian Potato Research Institute, Kraskovo-1, Moscow Region 140051, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| |
Collapse
|
12
|
Banerjee R, Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018; 143:1970-1996. [DOI: 10.1039/c8an00307f] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in lateral flow immunoassay-based devices as a point-of-care analytical tool for the detection of infectious diseases are reviewed.
Collapse
Affiliation(s)
- Ruptanu Banerjee
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| | - Amit Jaiswal
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| |
Collapse
|
13
|
Xu N, Pan L, Yu C, Wei X, Wang Y. Goldmag-based enzyme-linked immunosorbent assay for determination of α-lactalbumin in milk. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1332013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Naifeng Xu
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Li Pan
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Chao Yu
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Xinlin Wei
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Yuanfeng Wang
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
- State Key Laboratory of Dairy Biotechnology, Bright Dairy Co Ltd., Shanghai, P. R. China
| |
Collapse
|
14
|
Liu M, Zeng LF, Yang YJ, Hu LM, Lai WH. Fluorescent microsphere immunochromatographic assays for detecting bone alkaline phosphatase based on biolayer interferometry-selected antibody. RSC Adv 2017. [DOI: 10.1039/c7ra03756b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A convenient, reliable, highly sensitive, and competitive fluorescent microsphere-lateral flow immunochromatographic assay (FM-LFIA) was developed for the quantitative detection of BAP for the first time.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Li-Feng Zeng
- Department of Clinical Laboratory
- Jiangxi Provincial People's Hospital
- Nanchang 330006
- China
| | - Ya-Jie Yang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Li-Ming Hu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Wei-Hua Lai
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
15
|
Duan ML, Huang YM, Wu SS, Li GQ, Wang SY, Chen MH, Wang C, Liu DF, Liu CW, Lai WH. Rapid and sensitive detection of Salmonella enteritidis by a pre-concentrated immunochromatographic assay in a large-volume sample system. RSC Adv 2017. [DOI: 10.1039/c7ra11006e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pre-concentrated immunochromatographic assay for Salmonella enteritidis (S. enteritidis) detection was developed based on the unique optical and magnetic properties of magnetic nanoparticles (MNPs).
Collapse
Affiliation(s)
- Miao-Lin Duan
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Yan-Mei Huang
- Jiangxi YeLi Medical Device Co., Ltd
- Nanchang 330008
- China
| | - Song-Song Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Guo-Qiang Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Shu-Ying Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Ming-Hui Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Chun Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Dao-Feng Liu
- Institute for Nutrition and Food Safety
- Jiangxi Province Centre for Disease Control and Prevention
- Nanchang 330029
- China
| | - Cheng-Wei Liu
- Institute for Nutrition and Food Safety
- Jiangxi Province Centre for Disease Control and Prevention
- Nanchang 330029
- China
| | - Wei-Hua Lai
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
16
|
Fang W, Han C, Zhang H, Wei W, Liu R, Shen Y. Preparation of amino-functionalized magnetic nanoparticles for enhancement of bacterial capture efficiency. RSC Adv 2016. [DOI: 10.1039/c6ra13070d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PEI-MNPs were successfully fabricated, which showed higher bacterial capture ability than the triaminopropylalkoxysilane directly modified NH-MNPs at low concentration.
Collapse
Affiliation(s)
- Weijun Fang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
- Biopharmaceutical Research Institute
| | - Chen Han
- Institute of Quality Inspection of Light Industry & Chemical Products
- Shanghai Institute of Quality Inspection and Technical Research
- Shanghai 201114
- P. R. China
| | - Huabing Zhang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
| | - Wenmei Wei
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
| | - Rui Liu
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
| | - Yuxian Shen
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
- Biopharmaceutical Research Institute
| |
Collapse
|