1
|
Tai S, Zhang C, Shi S, Yang K, Han S, Wu J, Zhang S, Zhang K. Excitation wavelength-dependent lanthanide-disalicylaldehyde coordination hybrid capable of distinguishing D 2O from H 2O. Talanta 2024; 271:125732. [PMID: 38309109 DOI: 10.1016/j.talanta.2024.125732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The increasing demands in fields of anti-counterfeiting, fluorescence analysis, clinical therapy and LED illumination are urgently eager for more excellent optically switchable luminescent materials with the stable and multimodal fluorescence in single-component matrix. Herein, the lanthanide-disalicylaldehyde coordination hybrid H2Qj4/TbxEuy is proposed as an efficient luminescent matrix to connect terbium sensibilization with ESIPT (excited-state intramolecular proton transfer) effects, and three multi-emission hybrids are finally designed and synthesized by regulating Tb3+ and Eu3+ ratios. Surprisingly, the H2Qj4/Tb0.91Eu0.09 shows the excitation wavelength-dependent luminescence in solution which originates from two energy transfer ways of terbium sensibilization effect. It exhibits green and red lights under the 369 and 394 nm UV lamp, respectively. Three hybrids are further used as lab-on-a-molecule fluorescent probes to perform multianalyte detection for various solvents by selected fluorescent sensing channels. By means of PCA (principal component analysis) and HCA (hierarchical cluster analysis), all of them can successfully detect and discriminate17 common solvents, especially the H2O and D2O. Moreover, the H2Qj4/Tb0.91Eu0.09 also shows the wide linear responses of H2O content in D2O, discrimination of two-component solvent mixtures, hygroscopicity evaluation of D2O and information encryption which will advance the progress of multimodal luminescent materials and multianalyte chemosensors.
Collapse
Affiliation(s)
- Shengdi Tai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Chengjian Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shuaibo Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shaolong Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jinyu Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shishen Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Solanki S, Bisaria K, Iqbal HMN, Saxena R, Baxi S, Kothari AC, Singh R. Sugeno fuzzy inference system modeling and DFT calculations for the treatment of pesticide-laden water by newly developed arginine functionalized magnetic Mn-based metal organic framework. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123126-123147. [PMID: 37979110 DOI: 10.1007/s11356-023-30944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The uncontrolled utilization of pesticides poses a significant risk to the environment and human health, making its management essential. In this regard, a new arginine functionalized magnetic Mn-based metal-organic framework (Arg@m-Mn-MOF) was fabricated and assessed for the removal of cypermethrin (CYP) and chlorpyrifos (CHL) from aqueous system. The Arg@m-Mn-MOF was characterized by scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis. Various parameters were optimized in a series of batch experiments and the following conditions were found optimal: pH: 4 and 5, contact time: 20 min, adsorbent dosage: 0.6 and 0.8 g L-1 with initial concentration: 10 mg L-1 and temperature: 298 K for CYP and CHL, respectively. The composite attained a maximum removal capacity of 44.84 and 71.42 mg g-1 for CYP and CHL, respectively. The elucidated data was strongly fitted to the pseudo-second-order model of kinetics (R2 > 0.98) and Langmuir isotherm (R2 > 0.98). Based upon 350 experimental datasets obtained from batch studies and interpolated data, the adsorption capacity of the adsorbent was elucidated with R2 > 0.97 (CHL) and > 0.91 (CYP). The adsorption energy (- 11.67 kcal mol-1) calculated by Gaussian software suggests a good interaction between arginine and CHL through H-bonding. The present study's findings suggested the prepared Arg@m-Mn-MOF as a promising adsorbent for the efficient removal of pesticides from agriculture runoff.
Collapse
Affiliation(s)
- Swati Solanki
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, Mexico
| | - Reena Saxena
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
| | - Shalini Baxi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
| | - Anil Chandra Kothari
- Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, Uttarakhand, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
3
|
Bera S, Dastidar P. Selective Separation of Hazardous Chemicals from Vapor Phase by an Easily Accessible Breathing Coordination Polymer Derived from Terpyridyl/terephthalate Mixed Ligands. Chemistry 2023; 29:e202203133. [PMID: 36413099 DOI: 10.1002/chem.202203133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Coordination polymers are extensively studied materials because of their various potential applications. Amongst them, breathing coordination polymers that are capable of exchanging lattice occluded guest molecules with other guests via single-crystal-to-single-crystal (SC-SC) fashion are particularly intriguing. Herein, we disclose an easily accessible breathing coordination polymer namely DMF@Zn-CP capable of exchanging as many as 23 guest molecules of various kinds in SC-SC fashion when the crystals of the coordination polymer were exposed to the corresponding vapor of the guests. Selectivity experiments revealed that it was also capable of separating selectively hazardous chemicals such as dichloro-methane, benzene and fluorobenzene from the corresponding complex mixture of vapors of halomethanes, aromatic hydrocarbons and halobenzenes. The breathing coordination polymer could also be exploited as drug delivery vehicle; slow and sustained release of anti-bacterial agents (benzyl alcohol/phenethyl amine) as guests against both gram positive and gram negative bacteria was evident in zone inhibition assays. A mixed ligand strategy wherein a nitrile containing terpyridyl ligand (L) and terephthalate (TA) co-ligand were reacted with Co(II)/Ni(II)/Zn(II) nitrate salts was adopted herein. Three coordination polymers namely MeOH@Co-CP, DMF/H2 O@Ni-CP and DMF@Zn-CP were isolated and characterized by single crystal X-ray diffraction. Studies revealed that only DMF@Zn-CP possessed the ability to breath in response to the vapors of the guests as stimuli.
Collapse
Affiliation(s)
- Sourabh Bera
- School of Chemical Sciences Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
4
|
Nguyen PTK, Tran YBN. A Series of Metal‐Organic Frameworks for Adsorption of Halogenated Volatile Organic Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202203820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Phuong T. K. Nguyen
- Future Materials & Devices Laboratory Institute of Fundamental and Applied Sciences Duy Tan University Ho Chi Minh City 700000 Vietnam
- Faculty of Natural Sciences Duy Tan University Da Nang 550000 Vietnam
| | - Y B. N. Tran
- Future Materials & Devices Laboratory Institute of Fundamental and Applied Sciences Duy Tan University Ho Chi Minh City 700000 Vietnam
- Faculty of Natural Sciences Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
5
|
Xie Y, Lyu S, Zhang Y, Cai C. Adsorption and Degradation of Volatile Organic Compounds by Metal-Organic Frameworks (MOFs): A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7727. [PMID: 36363319 PMCID: PMC9656840 DOI: 10.3390/ma15217727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Volatile organic compounds (VOCs) are a major threat to human life and health. The technologies currently used to remove VOCs mainly include adsorption and photocatalysis. Adsorption is the most straightforward strategy, but it cannot ultimately eliminate VOCs. Due to the limited binding surface, the formaldehyde adsorption on conventional photocatalysts is limited, and the photocatalytic degradation efficiency is not high enough. By developing novel metal-organic framework (MOF) materials that can catalytically degrade VOCs at room temperature, the organic combination of new MOF materials and traditional purification equipment can be achieved to optimize adsorption and degradation performance. In the present review, based on the research on the adsorption and removal of VOCs by MOF materials in the past 10 years, starting from the structure and characteristics of MOFs, the classification of which was described in detail, the influencing factors and mechanisms in the process of adsorption and removal of VOCs were summarized. In addition, the research progress of MOF materials was summarized, and its future development in this field was prospected.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Sining Lyu
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Zhang
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Changhong Cai
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Vo TTN, Lim ST, Kim JH, Shim GH, Kim KM, Kweon B, Kim M, Lee CY, Ahn HS. Nanostructured micro/mesoporous graphene: removal performance of volatile organic compounds. RSC Adv 2022; 12:14570-14577. [PMID: 35702224 PMCID: PMC9105649 DOI: 10.1039/d2ra01275h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we demonstrate an integrated synthesis strategy, which is conducted by the thermochemical process, consisting of pre- and post-activation by thermal treatment and KOH activation for the reduction of graphite oxide. A large number of interconnected pore networks with a micro/mesoporous range were constructed on a framework of graphene layers with a specific surface area of up to 1261 m2 g-1. This suggests a synergistic effect of thermally exfoliated graphene oxide (TEGO) on the removal efficiency of volatile organic compounds by generating pore texture with aromatic adsorbates such as benzene, toluene, and o-xylene (denoted as BTX) from an inert gaseous stream concentration of 100 ppm. As a proof of concept, TEGO, as well as pre- and post-activated TEGO, were used as adsorbents in a self-designed BTX gas adsorption apparatus, which exhibited a high removal efficiency of up to 98 ± 2%. The distinctive structure of TEGO has a significant effect on removal performance, which will greatly facilitate the strategy of efficient VOC removal configurations.
Collapse
Affiliation(s)
- Thi To Nguyen Vo
- Department of Mechanical Engineering, Incheon National University Incheon Republic of Korea
| | - Sun Taek Lim
- Department of Mechanical Engineering, Incheon National University Incheon Republic of Korea
- Nuclear Safety Research Institute, Incheon National University Incheon Republic of Korea
| | - Ji Hoon Kim
- Department of Mechanical Engineering, Incheon National University Incheon Republic of Korea
- Research Institute of Basic Sciences, Incheon National University Incheon Republic of Korea
| | - Gyu Hyeon Shim
- Department of Mechanical Engineering, Incheon National University Incheon Republic of Korea
- Nuclear Safety Research Institute, Incheon National University Incheon Republic of Korea
| | - Koung Moon Kim
- Department of Mechanical Engineering, Incheon National University Incheon Republic of Korea
- Nuclear Safety Research Institute, Incheon National University Incheon Republic of Korea
| | - Boyeon Kweon
- Department of Mechanical Engineering, Incheon National University Incheon Republic of Korea
| | - Miyeon Kim
- Department of Energy and Chemical Engineering, Incheon National University Incheon Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering, Incheon National University Incheon Republic of Korea
| | - Ho Seon Ahn
- Department of Mechanical Engineering, Incheon National University Incheon Republic of Korea
- Nuclear Safety Research Institute, Incheon National University Incheon Republic of Korea
- AHN Materials INC Incheon Republic of Korea
| |
Collapse
|
7
|
Screening Metal-Organic Frameworks for Separation of Binary Solvent Mixtures by Compact NMR Relaxometry. Molecules 2021; 26:molecules26123481. [PMID: 34201035 PMCID: PMC8228364 DOI: 10.3390/molecules26123481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/18/2023] Open
Abstract
Metal–organic frameworks (MOFs) have great potential as an efficient alternative to current separation and purification procedures of a large variety of solvent mixtures—a critical process in many applications. Due to the huge number of existing MOFs, it is of key importance to identify high-throughput analytical tools, which can be used for their screening and performance ranking. In this context, the present work introduces a simple, fast, and inexpensive approach by compact low-field proton nuclear magnetic resonance (NMR) relaxometry to investigate the efficiency of MOF materials for the separation of a binary solvent mixture. The mass proportions of two solvents within a particular solvent mixture can be quantified before and after separation with the help of a priori established correlation curves relating the effective transverse relaxation times T2eff and the mass proportions of the two solvents. The new method is applied to test the separation efficiency of powdered UiO-66(Zr) for various solvent mixtures, including linear and cyclic alkanes and benzene derivate, under static conditions at room temperature. Its reliability is demonstrated by comparison with results from 1H liquid-state NMR spectroscopy.
Collapse
|
8
|
Kumar V, Kumar S, Kim KH, Tsang DCW, Lee SS. Metal organic frameworks as potent treatment media for odorants and volatiles in air. ENVIRONMENTAL RESEARCH 2019; 168:336-356. [PMID: 30384228 DOI: 10.1016/j.envres.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
The presence of odorants/volatiles in the air exerted various types of negative impacts on the surrounding environment. Their concentrations in indoor/outdoor air, if exceeding the threshold level, may not only affect human health but also deteriorate living standards. To maintain and enhance the quality of life, a better tool for the removal of these molecules is in great demand. Metal-organic frameworks (MOFs) and their associated materials offer an excellent platform for the treatment of odorants/volatiles in air (and water) systems. The diversity of ligands and metal ions in their frame imparts large loading capacities and excellent selectivity for a variety of targetable VOCs and/or odorants. This review discusses the use of MOFs and their composites to treat odorants/volatile molecules in gaseous media, with extensive discussion of their adsorptive uptakes, along with methods for their synthesis and regeneration. Moreover, the progression of odorant/volatile removal by MOFs is considered, with a special note on future directions in this emerging research field.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India
| | - Suresh Kumar
- Department of Applied Sciences, U.I.E.T., Panjab University, Chandigarh 160014, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sang-Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
9
|
Deng Y, Zhang R, Li D, Sun P, Su P, Yang Y. Preparation of iron-based MIL-101 functionalized polydopamine@Fe 3 O 4 magnetic composites for extracting sulfonylurea herbicides from environmental water and vegetable samples. J Sep Sci 2018; 41:2046-2055. [PMID: 29369511 DOI: 10.1002/jssc.201701391] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 11/07/2022]
Abstract
Here, we describe a simple one-pot solvothermal method for synthesizing MIL-101(Fe)@polydopamine@Fe3 O4 composites from polydopamine-modified Fe3 O4 particles. The composite was used as a magnetic adsorbent to rapidly extract sulfonylurea herbicides. The herbicides were then analyzed by high-performance liquid chromatography. The best possible extraction efficiencies were achieved by optimizing the most important extraction parameters, including desorption conditions, extraction time, adsorbent dose, salt concentration, and the pH of the solution. Good linearity was found (correlation coefficients >0.9991) over the herbicide concentration range 1-150 μg/L using the optimal conditions. The limits of detection (the concentrations giving signal/noise ratios of 3) were low, at 0.12-0.34 μg/L, and repeatability was good (the relative standard deviations were <4.8%, n = 6). The method was used successfully to determine four sulfonylurea herbicides in environmental water and vegetable samples, giving satisfactory recoveries of 87.1-108.9%. The extraction efficiency achieved using MIL-101(Fe)@polydopamine@Fe3 O4 was compared with the extraction efficiencies achieved using other magnetic composites (polydopamine@Fe3 O4 , Hong Kong University of Science and Technology (HKUST)-1@polydopamine@Fe3 O4 , and MIL-100(Fe)@polydopamine@Fe3 O4 ). The results showed that the magnetic MIL-101(Fe)@polydopamine@Fe3 O4 composites have great potential for the extraction of trace sulfonylurea herbicides from various sample types.
Collapse
Affiliation(s)
- Yulan Deng
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Ruiqi Zhang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Di Li
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Peng Sun
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Ping Su
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Yi Yang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
10
|
Kim KH, Szulejko JE, Kumar P, Kwon EE, Adelodun AA, Reddy PAK. Air ionization as a control technology for off-gas emissions of volatile organic compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:729-743. [PMID: 28347612 DOI: 10.1016/j.envpol.2017.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO2 and H2O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O3). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O3, NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763 South Korea.
| | - Jan E Szulejko
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763 South Korea
| | - Pawan Kumar
- Department of Nano Science and Materials, Central University of Jammu, Jammu, 180011 India
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 143-747, 05006 South Korea
| | - Adedeji A Adelodun
- Department of Marine Science and Technology, School of Earth and Mineral Science, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Police Anil Kumar Reddy
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763 South Korea
| |
Collapse
|
11
|
Tian F, Zhang X, Chen Y. Amino-functionalized metal–organic framework for adsorption and separation of dichloromethane and trichloromethane. RSC Adv 2016. [DOI: 10.1039/c6ra07637h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MOF functionalized with –NH2 exhibits improved adsorption capacity and selectivity for the adsorption and separation of dichloromethane and trichloromethane.
Collapse
Affiliation(s)
- Fengming Tian
- Institute of Applied Micro-Nano Materials
- School of Science
- Beijing Jiaotong University
- Beijing 100044
- People's Republic of China
| | - Xinghua Zhang
- Institute of Applied Micro-Nano Materials
- School of Science
- Beijing Jiaotong University
- Beijing 100044
- People's Republic of China
| | - Yunlin Chen
- Institute of Applied Micro-Nano Materials
- School of Science
- Beijing Jiaotong University
- Beijing 100044
- People's Republic of China
| |
Collapse
|