1
|
Jiang M, Huang J, Li P, Ataa B, Gu J, Wu Z, Qiao W. Optimization of membrane filtration and cleaning strategy in a high solid thermophilic AnMBR treating food waste. CHEMOSPHERE 2023; 342:140151. [PMID: 37714478 DOI: 10.1016/j.chemosphere.2023.140151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Anaerobic membrane bioreactor is advantageous over traditional processes for food waste treatment, i.e. short retention time, high loading rate, and particulate clean permeate. However, establishing a sustainable membrane filtration is a long-standing challenge because of its high viscosity and solids concentration characteristics. Therefore, this study investigated the changes in the membrane permeability before and after the cleaning during a 130-day thermophilic anaerobic experiment. Results show that the AnMBR system could maintain high stability even under a short HRT of 10 days and OLR of 9.0 kg-COD/(m3·d) with low volatile fatty acid of 50 mg/L. The membrane filtration deteriorates with the concurrence of a sharp increase of viscosity when the volatile solids reached 23 g/L. A critical flux was achieved at 5.5 L/(m2·h) under optimized operation conditions, membrane filtration/relaxing ratio with less than 4:1 at a hydraulic retention time of 15 d. Membrane fouling can be removed by soaking the membrane in NaClO (1 g/L, 15 h) and citric acid (2 g/L, 2 h). Conclusively, this work provides insight to establish the operation strategy for a thermophilic AnMBR treating food waste.
Collapse
Affiliation(s)
- Mengmeng Jiang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jiu Huang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Peng Li
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Bridget Ataa
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China
| | - Jinheng Gu
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhiyue Wu
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
2
|
Rivera F, Muñoz R, Prádanos P, Hernández A, Palacio L. A Systematic Study of Ammonia Recovery from Anaerobic Digestate Using Membrane-Based Separation. MEMBRANES 2021; 12:membranes12010019. [PMID: 35054545 PMCID: PMC8777830 DOI: 10.3390/membranes12010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
Ammonia recovery from synthetic and real anaerobic digestates was accomplished using hydrophobic flat sheet membranes operated with H2SO4 solutions to convert ammonia into ammonium sulphate. The influence of the membrane material, flow rate (0.007, 0.015, 0.030 and 0.045 m3 h−1) and pH (7.6, 8.9, 10 and 11) of the digestate on ammonia recovery was investigated. The process was carried out with a flat sheet configuration at a temperature of 35 °C and with a 1 M, or 0.005 M, H2SO4 solution on the other side of the membrane. Polytetrafluoroethylene membranes with a nominal pore radius of 0.22 µm provided ammonia recoveries from synthetic and real digestates of 84.6% ± 1.0% and 71.6% ± 0.3%, respectively, for a membrane area of 8.6 × 10−4 m2 and a reservoir volume of 0.5 L, in 3.5 h with a 1 M H2SO4 solution and a recirculation flow on the feed side of the membrane of 0.030 m3 h−1. NH3 recovery followed first order kinetics and was faster at higher pHs of the H2SO4 solution and recirculation flow rate on the membrane feed side. Fouling resulted in changes in membrane surface morphology and pore size, which were confirmed by Atomic Force Microscopy and Air Displacement Porometry.
Collapse
Affiliation(s)
- Fanny Rivera
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, 47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
| | - Antonio Hernández
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
- Correspondence:
| |
Collapse
|
3
|
Yan X, Wang G, Ma C, Li J, Cheng S, Yang C, Chen L. Effects of pollutants in alkali/surfactant/polymer (ASP) flooding oilfield wastewater on membrane fouling in direct contact membrane distillation by response surface methodology. CHEMOSPHERE 2021; 282:131130. [PMID: 34470168 DOI: 10.1016/j.chemosphere.2021.131130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The characteristic pollutants in alkali/surfactant/polymer (ASP) flooding oilfield wastewater are complex [e.g., NaCl, sodium dodecyl sulfate (SDS), petroleum, and polyacrylamide (PAM)]; thus, membrane distillation (MD) applied to treat this wastewater will be fouled and wetted easily. In this study, response surface methodology (RSM) was used to analyze the effects of pollutant interactions in ASP flooding oilfield wastewater on membrane fouling. The response model showed quantitative relationships between the membrane flux and the pollutant concentrations. The analysis of variance (p-value of the model < 0.0001, p-value of lack of fit > 0.05, R2 = 0.9750 and R2adj = 0.9500) showed that the regression equation fit the empirical data well. The results also indicated that the interactions of pollutants (NaCl and SDS; petroleum and PAM) had significant influence on the flux decline in the simulated ASP flooding oilfield wastewater. The characterization of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) revealed that the MD membrane was fouled by simulated ASP flooding oilfield wastewater to a certain degree. Moreover, the membrane flux was restored to 86.9% after hydraulic cleaning.
Collapse
Affiliation(s)
- Xiaoju Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Guodong Wang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China.
| | - Junyu Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shirong Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chengyu Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Lin Chen
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
4
|
Ren L, Yu S, Yang H, Li L, Cai L, Xia Q, Shi Z, Liu G. Chemical cleaning reagent of sodium hypochlorite eroding polyvinylidene fluoride ultrafiltration membranes: Aging pathway, performance decay and molecular mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Zhang B, Zhang R, Huang D, Shen Y, Gao X, Shi W. Membrane fouling in microfiltration of alkali/surfactant/polymer flooding oilfield wastewater: Effect of interactions of key foulants. J Colloid Interface Sci 2020; 570:20-30. [DOI: 10.1016/j.jcis.2020.02.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
6
|
Adsorption of anion polyacrylamide from aqueous solution by polytetrafluoroethylene (PTFE) membrane as an adsorbent: Kinetic and isotherm studies. J Colloid Interface Sci 2019; 544:303-311. [DOI: 10.1016/j.jcis.2019.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 11/23/2022]
|
7
|
Zhang B, Yu S, Zhu Y, Shen Y, Gao X, Shi W, Tay JH. Efficiencies and mechanisms of the chemical cleaning of fouled polytetrafluoroethylene (PTFE) membranes during the microfiltration of alkali/surfactant/polymer flooding oilfield wastewater. RSC Adv 2019; 9:36940-36950. [PMID: 35539090 PMCID: PMC9075129 DOI: 10.1039/c9ra06745k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/27/2019] [Indexed: 01/07/2023] Open
Abstract
The chemical cleaning of fouled polytetrafluoroethylene (PTFE) membranes with different reagents after the microfiltration of alkali/surfactant/polymer (ASP) flooding oilfield wastewater was examined in this study.
Collapse
Affiliation(s)
- Bing Zhang
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service
- Chongqing Key Laboratory of Catalysis & New Environmental Materials
- Chongqing Technology and Business University
- Chongqing 400067
- China
| | - Shuili Yu
- School of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Youbing Zhu
- School of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service
- Chongqing Key Laboratory of Catalysis & New Environmental Materials
- Chongqing Technology and Business University
- Chongqing 400067
- China
| | - Xu Gao
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service
- Chongqing Key Laboratory of Catalysis & New Environmental Materials
- Chongqing Technology and Business University
- Chongqing 400067
- China
| | - Wenxin Shi
- School of Environmental and Ecology
- Chongqing University
- Chongqing 400044
- China
| | - Joo Hwa Tay
- Department of Civil Engineering
- University of Calgary
- Calgary T2N 1N4
- Canada
| |
Collapse
|
8
|
Zhu Y, Yu S, Zhang B, Li J, Zhao D, Gu Z, Gong C, Liu G. Antifouling performance of polytetrafluoroethylene and polyvinylidene fluoride ultrafiltration membranes during alkali/surfactant/polymer flooding wastewater treatment: Distinctions and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:988-998. [PMID: 29929150 DOI: 10.1016/j.scitotenv.2018.06.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Alkali/surfactant/polymer (ASP) flooding wastewater is highly caustic, and membrane fouling is the main obstacle during ASP ultrafiltration (UF) treatment. To maintain favorable filtration performance, polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes were implemented here, and their antifouling properties and mechanisms were investigated based on the threshold flux theory. Compared with the PVDF membranes, the PTFE membranes exhibited superior antifouling properties with lower reductions in flux and smaller hydraulic resistance, and they presented a nearly identical pseudo-stable fouling rate at a later time point. In the fouling layers of the PTFE and PVDF membranes, anion polyacrylamide (APAM) was observed along with divalent/trivalent metal ions. The thermodynamic and molecular mechanisms of membrane fouling by APAM were elucidated using the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and atomic force microscopy (AFM), respectively. The calculated total interfacial free energy (mJ/m2) of adhesion between the APAM and PTFE membranes was positive, and the value between the APAM and PVDF membranes was negative. Furthermore, the values and interaction distances of the measured intermolecular rupture and approaching forces were larger for APAM-PTFE than for APAM-PVDF. For the PTFE membranes, the positive free energies and smaller intermolecular interaction resulted in weaker APAM-PTFE adhesion and adsorption and therefore the lower levels of flux decline and the later achievement of the pseudo-stable fouling rate. Additionally, the total flux recoveries observed after physical cleaning reached 0.78-0.80 and 0.32-0.39 for the PTFE and PVDF membranes, respectively, which showed that the PTFE membranes can be cleaned easily. The PTFE membranes have considerable potential for extensive application in UF treatments for ASP wastewater. These results should promote understanding the essence of the threshold flux and the fouling control of UF membranes.
Collapse
Affiliation(s)
- Youbing Zhu
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Shuili Yu
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Bing Zhang
- Heilongjiang Institute of Construction Technology, Heilongjiang 150025, China
| | - Jianfeng Li
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Dongsheng Zhao
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Zhengyang Gu
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Chao Gong
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China.
| |
Collapse
|
9
|
Ahmad T, Guria C, Mandal A. Optimal synthesis and operation of low-cost polyvinyl chloride/bentonite ultrafiltration membranes for the purification of oilfield produced water. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Zhu X, Tian Y, Li F, Liu Y, Wang X, Hu X. Preparation and application of magnetic superhydrophobic polydivinylbenzene nanofibers for oil adsorption in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22911-22919. [PMID: 29858992 DOI: 10.1007/s11356-018-2385-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Superhydrophobic materials have an excellent performance in oil adsorption. In this study, a novel magnetic polydivinylbenzene (PDVB) nanofiber was synthesized by the method of cation polymerization to adsorb oil from water. The magnetic PDVB was hollow nanofiber with Fe3O4 nanoparticles embedded in its structure. The synthesis condition was optimized that the ratio of divinylbenzene (DVB) to boron fluoride ethyl ether (BFEE) was 10:1 (v/v), and the Fe3O4 dosage was 0.175 g/g of DVB. The material showed an excellent oil adsorption performance in wastewater, and the oil concentration could be reduced from 2000 to 92.2 mg/L within 5 min. The magnetic PDVB had relatively high adsorption capacity (12 g/g) for oil, which could be attributed to its super hydrophobicity and one-dimensional nanostructure with high crosslinking degree. The isotherm study indicated that the magnetic PDVB adsorbed oil was an asymmetric or multilayer adsorption process. The material could be regenerated by simple squeeze and maintain its adsorption capacity after it has been used for 10 recycles. In real coking wastewater, the magnetic PDVB kept a good oil adsorption performance without the interference of various pollutants, indicating a wide prospect in practical use.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ye Tian
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feifei Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yapeng Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiang Hu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
11
|
Chemical cleaning of ultrafiltration membranes for polymer-flooding wastewater treatment: Efficiency and molecular mechanisms. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.08.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zhang R, Yu S, Shi W, Tian J, Jin L, Zhang B, Li L, Zhang Z. Optimization of a membrane cleaning strategy for advanced treatment of polymer flooding produced water by nanofiltration. RSC Adv 2016. [DOI: 10.1039/c6ra01832g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An optimized cleaning strategy against NF membranes fouled by polymer flooding produced water has been proposed and is proven to be high-performing.
Collapse
Affiliation(s)
- Ruijun Zhang
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Shuili Yu
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Jiayu Tian
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Limei Jin
- College of Food Science
- Heilongjiang Bayi Agricultural university
- Daqing
- P. R. China
| | - Bing Zhang
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Li Li
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Zhiqiang Zhang
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| |
Collapse
|