1
|
Kumara BN, Kalimuthu P, Prasad KS. Synthesis, properties and potential applications of photoluminescent carbon nanoparticles: A review. Anal Chim Acta 2023; 1268:341430. [PMID: 37268342 DOI: 10.1016/j.aca.2023.341430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Photoluminescent-carbon nanoparticles (PL-CNPs) are a new class of materials that received immense interest among researchers due to their distinct characteristics, including photoluminescence, high surface-to-volume ratio, low cost, ease of synthesis, high quantum yield, and biocompatibility. By exploiting these outstanding properties, many studies have been reported on its utility as sensors, photocatalysts, probes for bio-imaging, and optoelectronics applications. From clinical applications to point-of-care test devices, drug loading to tracking of drug delivery, and other research innovations demonstrated PL-CNPs as an emerging material that could substitute conventional approaches. However, some of the PL-CNPs have poor PL properties and selectivity due to the presence of impurities (e.g., molecular fluorophores) and unfavourable surface charges by the passivation molecules, which impede their applications in many fields. To address these issues, many researchers have been paying great attention to developing new PL-CNPs with different composite combinations to achieve high PL properties and selectivity. Herein, we thoroughly discussed the recent development of various synthetic strategies employed to prepare PL-CNPs, doping effects, photostability, biocompatibility, and applications in sensing, bioimaging, and drug delivery fields. Moreover, the review discussed the limitations, future direction, and perspectives of PL-CNPs in possible potential applications.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| | - K S Prasad
- Centre for Nutrition Studies, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India.
| |
Collapse
|
2
|
Gulati S, Baul A, Amar A, Wadhwa R, Kumar S, Varma RS. Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:554. [PMID: 36770515 PMCID: PMC9920802 DOI: 10.3390/nano13030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Carbon quantum dots (CQDs), a new family of photoluminescent 0D NPs, have recently received a lot of attention. They have enormous future potential due to their unique properties, which include low toxicity, high conductivity, and biocompatibility and accordingly can be used as a feasible replacement for conventional materials deployed in various optoelectronic, biomedical, and energy applications. The most recent trends and advancements in the synthesizing and setup of photoluminescent CQDs using environmentally friendly methods are thoroughly discussed in this review. The eco-friendly synthetic processes are emphasized, with a focus on biomass-derived precursors. Modification possibilities for creating newer physicochemical properties among different CQDs are also presented, along with a brief conceptual overview. The extensive amount of writings on them found in the literature explains their exceptional competence in a variety of fields, making these nanomaterials promising alternatives for real-world applications. Furthermore, the benefits, drawbacks, and opportunities for CQDs are discussed, with an emphasis on their future prospects in this emerging research field.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Arikta Baul
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Anoushka Amar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rachit Wadhwa
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
3
|
Tomskaya A, Asanov IP, Yushina I, Rakhmanova MI, Smagulova S. Optical Properties of Tricarboxylic Acid-Derived Carbon Dots. ACS OMEGA 2022; 7:44093-44102. [PMID: 36506125 PMCID: PMC9730746 DOI: 10.1021/acsomega.2c05503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Herein, we report the characterization of two types of luminescent carbon dots (CDs) synthesized by the hydrothermal treatment of citric acid and trans-aconitic acid by using ammonia solution as a nitrogen dopant. The lateral size range of nanoparticles for CDs lies in the range of 3-15 nm. The intense blue photoluminescence (PL) was emitted by the CDs at around 409-435 nm under the excitation of 320 nm. The PL quantum yield of the synthesized CDs ranged from 26.4 to 51%. Our results of the structural and optical properties of CDs imply that molecular fluorophores are an important part of the structure; in particular, the main contribution to the PL is carried by the fluorophores based on citrazinic acid derivatives, which formed during the synthesis of CDs.
Collapse
Affiliation(s)
- Aleksandra Tomskaya
- A.M.
Prokhorov General Physics Institute, RAS, Moscow 119991, Russia
- Moscow
Institute of Physics and Technology, Dolgoprudny 141701, Russia
- North-Eastern
Federal University, Yakutsk 670000, Russia
| | - Igor P. Asanov
- Nikolaev
Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Irina Yushina
- Nikolaev
Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
4
|
Tade RS, Patil PO. Biofabricated functionalized graphene quantum dots (fGQDs): Unravelling its fluorescence sensing mechanism of human telomerase reverse transcriptase (hTERT) antigen and in vitro bioimaging application. Biomed Mater 2022; 17. [PMID: 35896107 DOI: 10.1088/1748-605x/ac84ba] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022]
Abstract
Lung cancer (LC) is a deadly malignancy that is posing a serious threat to human health. Therefore, early detection of LC biomarkers is the key to reducing LC-related fatalities. Herein, we present the first fluorescent-based selective detection of LC biomarker human telomerase reverse transcriptase (hTERT) using polyethyleneimine (PEI) functionalized graphene quantum dots (fGQDs). One-pot in situ synthesis of amine-functionalized GQDs was accomplished by hydrothermal carbonization of biowaste-derived cellulose and PEI. Synthesized fGQDs were characterized by various analytical techniques. Synthesized fGQDs not only exhibited enhanced fluorescence life-time but also excellent stability in the different solvents compared to bare GQDs. The surface activation of hTERT-Ab by carbodiimide chemistry (EDC-NHS) resulted in stacking interactions with fGQDs, involving adsorption-desorption as well as competitive mechanisms. The higher inherent affinity of hTERT-Ag (hTERT antigen) for hTERT-Ab (hTERT antibody) resulted in complex formation and recovery of fGQD fluorescence. As a result, this fluorescence sensing demonstrated a greater linear detection range (0.01 ng mL-1 to 100 µg mL-1) as well as a notable low detection limit (36.3 pg mL-1). Furthermore, the fabricated immunosensor (Ab@fGQDs) has excellent stability and performance in real samples, with an average recovery of 97.32%. The results of cytotoxicity and cellular bioimaging study in A549 cells show that fGQDs can be used for additional nanotherapeutics and biological applications.
Collapse
Affiliation(s)
- Rahul S Tade
- Pharmaceutics, HR Patel Institute of Pharmaceutical Education and Research, Shirsoli PB, Jalgaon, Shirpur, Maharashtra, 425405, INDIA
| | - Pravin O Patil
- Department of Pharmaceutical Chemistry, H R Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Shirpur, Shirpur, 425405, INDIA
| |
Collapse
|
5
|
Zhang H, Zheng Y, Yu S, Chen W, Yang J. A Review of Advancing Two-Dimensional Material Membranes for Ultrafast and Highly Selective Liquid Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2103. [PMID: 35745442 PMCID: PMC9229763 DOI: 10.3390/nano12122103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022]
Abstract
Membrane-based nanotechnology possesses high separation efficiency, low economic and energy consumption, continuous operation modes and environmental benefits, and has been utilized in various separation fields. Two-dimensional nanomaterials (2DNMs) with unique atomic thickness have rapidly emerged as ideal building blocks to develop high-performance separation membranes. By rationally tailoring and precisely controlling the nanochannels and/or nanoporous apertures of 2DNMs, 2DNM-based membranes are capable of exhibiting unprecedentedly high permeation and selectivity properties. In this review, the latest breakthroughs in using 2DNM-based membranes as nanosheets and laminar membranes are summarized, including their fabrication, structure design, transport behavior, separation mechanisms, and applications in liquid separations. Examples of advanced 2D material (graphene family, 2D TMDs, MXenes, metal-organic frameworks, and covalent organic framework nanosheets) membrane designs with remarkably perm-selective properties are highlighted. Additionally, the development of strategies used to functionalize membranes with 2DNMs are discussed. Finally, current technical challenges and emerging research directions of advancing 2DNM membranes for liquid separation are shared.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.Z.); (W.C.)
| | - Yiling Zheng
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.Z.); (W.C.)
| | - Shuwen Yu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China;
| | - Weixing Chen
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (Y.Z.); (W.C.)
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| |
Collapse
|
6
|
Shayan Nasr M, Esmaeilnezhad E, Allahbakhsh A, Choi HJ. Nitrogen-doped graphene quantum dot nanofluids to improve oil recovery from carbonate and sandstone oil reservoirs. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Xantini Z, Erasmus E. Platinum supported on nanosilica and fibrous nanosilica for hydrogenation reactions. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Nitrogen-doped graphene oxide as a catalyst for the oxidation of Rhodamine B by hydrogen peroxide: application to a sensitive fluorometric assay for hydrogen peroxide. Mikrochim Acta 2019; 187:47. [PMID: 31845299 DOI: 10.1007/s00604-019-3994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
The authors report that nitrogen-doped graphene oxide (NGO) catalyzes the oxidative decomposition of the fluorophore Rhodamine B (RhB) by hydrogen peroxide. The catalytic decomposition of hydrogen peroxide yields free hydroxyl radicals that destroy RhB so that the intensity of the yellow fluorescence is reduced. Nitrogen doping enhances the electronic and optical properties and surface chemical reactivities of GO such as widening of bandgap, increase in conductivity, enhanced quenching and adsorbing capabilities etc. The catalytic properties of NGO are attributed to its large specific surface and high electron affinity of nitrogen atoms. The chemical and structural properties of GO and NGO were characterized by XRD, FTIR, SEM, UV-visible and Raman spectroscopies. The method was optimized by varying the concentration of RhB, nitrogen dopant and hydrogen peroxide. The fluorescent probe, best operated at excitation/emission wavelengths of 554/577 nm, allows hydrogen peroxide to be determined in concentrations as low as 94 pM with a linear range spanning from 1 nM to 1 μM. Graphical abstract Schematic illustration of a fluorescence quenching method for the determination of H2O2. Upon addition of H2O2, nitrogen-doped graphene oxide (NGO) catalyzes the oxidation of Rhodamine B dye due to hydroxyl radical generation, which leads to a sensitive quenchometric methd for H2 O2.
Collapse
|
9
|
Zhao X, Lin X, Wang J, Chen X. Facile preparation of N,S-graphene oxide nanosheets as a fluorescence “off–on” sensing platform for sensitive detection of biothiols. NEW J CHEM 2019. [DOI: 10.1039/c8nj06024j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fluorescent N,S-graphene oxide was prepared via a one-step, solvent-free approach, and used as a probe for sensitive detection of biothiols.
Collapse
Affiliation(s)
- Xiuxiu Zhao
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Xin Lin
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Jianhua Wang
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Xuwei Chen
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| |
Collapse
|
10
|
Soleymani J, Hasanzadeh M, Somi MH, Ozkan SA, Jouyban A. Targeting and sensing of some cancer cells using folate bioreceptor functionalized nitrogen-doped graphene quantum dots. Int J Biol Macromol 2018; 118:1021-1034. [PMID: 30001595 DOI: 10.1016/j.ijbiomac.2018.06.183] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 02/02/2023]
Abstract
In recent years, study of folate receptor (FR) expression related to targeting, drug delivery and counting of tumoral cells have been followed. In this work, a fast and simple strategy was reported to determine the FR expressed cancer cells based on the selective bonding of the folic acid/folate (FA) to the FR-positive tumor cells. The folate decorated Nitrogen-doped graphene quantum dots (N-GQDs) were utilized as selective targeting of the MKN 45 cells. Fluorescent microscopy imaging investigations revealed that the produced FA conjugated N-GQDs could specifically attach to the target FR-positive tumor cells. Due to the fluorescence emission of N-GQDs, the developed cytosensor is free from attaching any fluorescent ligand i.e. Rhodamine B to capture the florescence microscopy images and also flow cytometry analysis. The fabricated cytosensor possesses a dynamic range from 100 to 7.0 × 104 cell·mL-1 with high selectivity. Furthermore, the cytosensor also could visualized the MCF 7 and HT 29 cells where the dynamic ranges were 100 to 1.0 × 104 and 500 to 4.0 × 104 cells·mL-1, respectively. In vitro toxicity tests has shown low toxicity of the synthesized N-GQDs where the minimum viability is 68%. The proposed FA-N-GQDs based cytosensor provides a novel platform for detection of MKN 45, HT 29 and MCF 7 cancer cell lines which could be used in multi-channel cancer diagnosis biodevice.
Collapse
Affiliation(s)
- Jafar Soleymani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel Ayşil Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Chaudhuri H, Gupta R, Dash S. Efficient Synthesis of Branched Polyamine Based Thermally Stable Heterogeneous Catalyst for Knoevenagel Condensation at Room Temperature. Catal Letters 2018. [DOI: 10.1007/s10562-018-2368-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Xia C, Hai X, Chen XW, Wang JH. Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. Talanta 2017; 168:269-278. [DOI: 10.1016/j.talanta.2017.03.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/12/2017] [Accepted: 03/16/2017] [Indexed: 12/01/2022]
|