1
|
Zhao YL, Min X, Li L, Han XL, Wei Y, Hu XQ. Photocatalyst-Free Transformation of C(sp 3)-H Bonds to Oxime Ethers via Photoinduced Hydrogen Atom Transfer. Org Lett 2024; 26:9383-9388. [PMID: 39436111 DOI: 10.1021/acs.orglett.4c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Herein, a direct transformation of aliphatic C-H bonds to oxime ethers has been developed via light-promoted hydrogen atom transfer (HAT) in the absence of a photocatalyst. Singlet oxygen and chlorine radical are complementary C(sp3)-H bond cleaving agents in this reaction, enabling the extraction of hydrogen atoms from a diverse range of compounds, like cycloalkanes, ethers, amines, amides, and cyclic sulfides. This method excels in transforming common aliphatic C-H bonds into valuable oxime ethers featuring abundant chemical feedstocks, good functional group tolerance, and catalyst free conditions.
Collapse
Affiliation(s)
- Yu-Lian Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xuehong Min
- Equine Science Research and Horse Doping Control Laboratory, Hubei Provincial Engineering Research Center of Racing Horse Detection and Application Transformation, Wuhan Business University, Wuhan 430056, China
| | - Lijing Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Le Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
2
|
Kosmalski T, Kupczyk D, Baumgart S, Paprocka R, Studzińska R. A Review of Biologically Active Oxime Ethers. Molecules 2023; 28:5041. [PMID: 37446703 DOI: 10.3390/molecules28135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Oxime ethers are a class of compounds containing the >C=N-O-R moiety. The presence of this moiety affects the biological activity of the compounds. In this review, the structures of oxime ethers with specific biological activity have been collected and presented, and bactericidal, fungicidal, antidepressant, anticancer and herbicidal activities, among others, are described. The review includes both those substances that are currently used as drugs (e.g., fluvoxamine, mayzent, ridogrel, oxiconazole), as well as non-drug structures for which various biological activity studies have been conducted. To the best of our knowledge, this is the first review of the biological activity of compounds containing such a moiety. The authors hope that this review will inspire scientists to take a greater interest in this group of compounds, as it constitutes an interesting research area.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza Str. 24, 85-092 Bydgoszcz, Poland
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
3
|
(E)-1-(5-Methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethan-1-one Oxime. MOLBANK 2023. [DOI: 10.3390/m1593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The reaction of 1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethan-1-one (1) with excess hydroxylamine hydrochloride (2 mole equivalents) in dry ethanol afforded (E)-1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethan-1-one oxime (2) in 86% yield. The structure of the new heterocycle 2 was confirmed using nuclear magnetic resonance spectroscopy, single crystal X-ray and elemental analysis.
Collapse
|
4
|
Kancharla SK, Birudaraju S, Pal A, Krishnakanth Reddy L, Reddy ER, Vagolu SK, Sriram D, Bonige KB, Korupolu RB. Synthesis and biological evaluation of isatin oxime ether-tethered aryl 1 H-1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. NEW J CHEM 2022. [DOI: 10.1039/d1nj05171g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of isatin oxime ether-tethered aryl 1H-1,2,3-triazole hybrids were synthesized and screened for their in vitro antitubercular activity against the M. tuberculosis H37Rv strain.
Collapse
Affiliation(s)
- Sampath Kumar Kancharla
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India
| | - Saritha Birudaraju
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
| | - Arani Pal
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
| | - L. Krishnakanth Reddy
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
| | - Eda Rami Reddy
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Siva Krishna Vagolu
- Medicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana State-500078, India
| | - Dharmarajan Sriram
- Medicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana State-500078, India
| | - Kishore Babu Bonige
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India
| | - Raghu Babu Korupolu
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India
| |
Collapse
|
5
|
Qi Z, Wang S. Chemodivergent Synthesis of Oxazoles and Oxime Ethers Initiated by Selective C-N/C-O Formation of Oximes and Diazo Esters. Org Lett 2021; 23:8549-8553. [PMID: 34618474 DOI: 10.1021/acs.orglett.1c03252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemodivergent reactions of oximes and diazo esters involving Rh-catalyzed [3+2] annulation and photodriven O-H insertion have been developed to generate oxazoles and oxime ethers. A range of aldehyde and ketone oximes reacted with α-diazocarbonyl compounds in a controllable manner in which functional groups, including ketone, ester, amide, ether, thiol ether, silane, alkene, allene, and alkyne groups, were well tolerated.
Collapse
Affiliation(s)
- Zhenjie Qi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
(E)-5-(Methoxyimino)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one. MOLBANK 2021. [DOI: 10.3390/m1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
(E)-5-(Methoxyimino)-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one was prepared by a condensation reaction from 3,4-dihydro-1H-benzo[b]azepin-2,5-dione and O-methylhydroxylamine. The configuration at the C=N double bond was determined by X-ray crystallography.
Collapse
|
7
|
Kącka-Zych A. The Molecular Mechanism of the Formation of Four-Membered Cyclic Nitronates and Their Retro (3 + 2) Cycloaddition: A DFT Mechanistic Study. Molecules 2021; 26:molecules26164786. [PMID: 34443373 PMCID: PMC8401889 DOI: 10.3390/molecules26164786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
In the present work, the formation of the four-membered cyclic nitronates and the retro (3 + 2) cycloaddition (retro-32CA) reaction of the 4H-[1,2]oxazete 2-oxide were studied using the density functional theory method at the MPWB1K/6-311G(d,p) theoretical level. The electronic structure of 3-tert-butyl-4,4-dimethyl-1,2-dinitro-pent-2-ene was known through electron localization function analysis, natural population analysis, and molecular electrostatic potential analysis. The formation of 4,4-di-tert-butyl-3-nitromethyl-4H-[1,2]oxazete 2-oxide proceeds through a one-step mechanism. The mechanism of the retro-32CA leading to di-tert-butyl ketone and nitrile oxide derivative should be described as an asynchronous two-stage one-step process. The bonding evolution theory study was carried out to clarify the mechanisms of the formation of 4H-[1,2]oxazete 2-oxide and their retro-32CA.
Collapse
Affiliation(s)
- Agnieszka Kącka-Zych
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| |
Collapse
|
8
|
Antonova YA, Ioffe SL, Sukhorukov AY, Tabolin AA. Sequential Acylation/Silylation/Hetero‐Claisen Rearrangement of Nitroalkanes for the Synthesis of Protected Hydroxyoxime Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yulia A. Antonova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prosp. 47 Moscow 119991 Russia
- Department of Chemistry M. V. Lomonosov Moscow State University Leninskie gory 1 Moscow 119991 Russia
| | - Sema L. Ioffe
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prosp. 47 Moscow 119991 Russia
| | - Alexey Yu. Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prosp. 47 Moscow 119991 Russia
| | - Andrey A. Tabolin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prosp. 47 Moscow 119991 Russia
| |
Collapse
|
9
|
Stahl J, Yatham VR, Crespi S, König B. Cesium Carbonate Catalyzed Oxa‐Michael Addition of Oximes to Acrylonitrile. ChemistrySelect 2021. [DOI: 10.1002/slct.202100924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jessica Stahl
- Department of Organic Chemistry University of Regensburg D-93040 Regensburg
| | - Veera Reddy Yatham
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| | - Stefano Crespi
- Stratingh Institute for Chemistry University of Groningen 9747 AG Groningen The Netherlands
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg D-93040 Regensburg
| |
Collapse
|
10
|
Sandmeier T, Carreira EM. Enantio- and Chemoselective Intramolecular Iridium-Catalyzed O-Allylation of Oximes. Org Lett 2021; 23:2643-2647. [PMID: 33749284 DOI: 10.1021/acs.orglett.1c00559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A method for the enantio- and chemoselective iridium-catalyzed O-allylation of oximes is described. Kinetic resolution in an intramolecular setting provides enantioenriched oxime ethers and aliphatic allylic alcohols. The synthetic potential of the products generated with this method is showcased by their elaboration into a series of heterocyclic compounds and the formal synthesis of glycoprotein GP IIb-IIIa receptor antagonist (-)-roxifiban. Preliminary mechanistic experiments and computational data shed light on the remarkable chemoselectivity of the reaction.
Collapse
Affiliation(s)
- Tobias Sandmeier
- Eidgenössische Technische Hochschule (ETH) Zürich, Building HCI, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Eidgenössische Technische Hochschule (ETH) Zürich, Building HCI, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Luo Y, Chen CH, Zhu F, Mo DL. Synthesis of α-aminooxy amides through [3 + 3] cycloaddition and Sc(OTf) 3-catalyzed double C-N bond cleavage in a one-pot reaction. Org Biomol Chem 2020; 18:8209-8218. [PMID: 33043956 DOI: 10.1039/d0ob01788d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various α-aminooxy amides bearing a quaternary carbon at the α-position were prepared in good to excellent yields under mild reaction conditions from N-vinyl nitrones and α-bromohydroxamates. The N-vinyl nitrones tolerate a wide range of N-vinyl fluorenone nitrones and N-vinyl isatin nitrones. Mechanistic studies show that the reaction initially proceeds through [3 + 3] cycloaddition between N-vinyl nitrones and aza-oxyallyl cations generated from α-bromohydroxamates to afford six-membered N,O-heterocycles, followed by double C-N bond cleavage in the presence of the Sc(OTf)3 catalyst. A selective N-O bond cleavage of the obtained α-aminooxy amides is also realized under Fe/NH4Cl conditions. Furthermore, gram-scalable preparations of α-aminooxy amides are easily achieved.
Collapse
Affiliation(s)
- Yan Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Chun-Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Fan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| |
Collapse
|
12
|
Paveliev SA, Churakov AI, Alimkhanova LS, Segida OO, Nikishin GI, Terent'ev AO. Electrochemical Synthesis of
O
‐Phthalimide Oximes from
α
‐Azido Styrenes
via
Radical Sequence: Generation, Addition and Recombination of Imide‐
N
‐Oxyl and Iminyl Radicals with C−O/N−O Bonds Formation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Artem I. Churakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Liliya S. Alimkhanova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| |
Collapse
|
13
|
Reeta, Rangarajan TM, Singh RP, Singh RP, Singh M. An Easy Access to Oxime Ethers by
Pd‐Catalyzed
C—O
Cross‐Coupling
of Activated Aryl Bromides with Ketoximes and Chalcone Oximes. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Reeta
- Centre for Fire, Explosive and Environment Safety, DRDO Delhi India
- Department of ChemistryUniversity of Delhi Delhi India
| | - T. M. Rangarajan
- Department of ChemistrySri Venkateswara College, University of Delhi New Delhi India
| | - Raj Pal Singh
- Centre for Fire, Explosive and Environment Safety, DRDO Delhi India
| | - R. P. Singh
- Department of ChemistrySri Venkateswara College, University of Delhi New Delhi India
| | - Manjula Singh
- Department of ChemistryShivaji College, University of Delhi New Delhi India
| |
Collapse
|
14
|
Reeta R, Rangarajan TM, Kaushik K, Singh RP, Singh M, Singh RP. Efficient solvent- and temperature-tuned access to aldoxime ethers and phenolic functions by Pd-catalyzed C–O cross-coupling of aldoximes with aryl bromides and bromo-chalcones. NEW J CHEM 2020. [DOI: 10.1039/c9nj05124d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A single method with a functionality switching option, to access oxime ethers and phenols, was developed for the first time for the Pd-catalyzed C–O cross-coupling of aryl bromides and bromo-chalcones with aldoximes.
Collapse
Affiliation(s)
- Reeta Reeta
- Centre for Fire, Explosive and Environment Safety
- DRDO
- Delhi
- India
- Department of Chemistry
| | - T. M. Rangarajan
- Department of Chemistry
- Sri Venkateswara College
- University of Delhi
- New Delhi
- India
| | - Kumar Kaushik
- Centre for Fire, Explosive and Environment Safety
- DRDO
- Delhi
- India
| | - Rishi Pal Singh
- Department of Chemistry
- Sri Venkateswara College
- University of Delhi
- New Delhi
- India
| | - Manjula Singh
- Department of Chemistry, Shivaji College, University of Delhi
- New Delhi
- India
| | - Raj Pal Singh
- Centre for Fire, Explosive and Environment Safety
- DRDO
- Delhi
- India
| |
Collapse
|
15
|
Chen C, Zhao J, Shi X, Liu L, Zhu YP, Sun W, Zhu B. Recent advances in cyclization reactions of unsaturated oxime esters (ethers): synthesis of versatile functionalized nitrogen-containing scaffolds. Org Chem Front 2020. [DOI: 10.1039/d0qo00397b] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We summarized recent advances in cyclization reactions of unsaturated oxime esters (ethers), which provide diversiform functionalized nitrogen-containing scaffolds.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Xiaonan Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
16
|
Wei DQ, Liu ZT, Wang XM, Hou CJ, Hu XP. Copper-catalyzed asymmetric propargylic etherification of oximes promoted by chiral tridentate P,N,N-ligand. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Han Z, Shen S, Zheng F, Hu H, Zhang J, Zhu S. Copper-catalyzed synthesis of oxime ethers from iminoxy radical (C N–O ) and maleimides via radical addition. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
An Insight into Selective Olefin Bond Functionalization of Cyclodienes through Nitrile Oxide 1,3-Dipolar Cycloadditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201900688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Wang SG, Cramer N. An Enantioselective Cpx
Rh(III)-Catalyzed C−H Functionalization/Ring-Opening Route to Chiral Cyclopentenylamines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813953] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shou-Guo Wang
- Laboratory of Asymmetric Catalysis and Synthesis; EPFL SB ISIC LCSA, BCH 4305; 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis; EPFL SB ISIC LCSA, BCH 4305; 1015 Lausanne Switzerland
| |
Collapse
|
20
|
Wang SG, Cramer N. An Enantioselective Cp x Rh(III)-Catalyzed C-H Functionalization/Ring-Opening Route to Chiral Cyclopentenylamines. Angew Chem Int Ed Engl 2019; 58:2514-2518. [PMID: 30600903 DOI: 10.1002/anie.201813953] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 11/07/2022]
Abstract
A chiral Cpx RhIII catalyst system in situ generated from a Cpx RhI (cod) precatalyst and bis(o-toluoyl) peroxide as activating oxidant was developed for a C-H activation/ring-opening sequence between aryl ketoxime ethers and 2,3-diazabicyclo[2.2.1]hept-5-enes. This transformation provides access to densely functionalized chiral cyclopentenylamines in excellent yields and enantioselectivities of up to 97:3 er. The reported method is also well suitable for asymmetric alkenyl C-H functionalizations of α,β-unsaturated oxime ethers, furnishing skipped dienes with high levels of enantiocontrol.
Collapse
Affiliation(s)
- Shou-Guo Wang
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305, 1015, Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305, 1015, Lausanne, Switzerland
| |
Collapse
|
21
|
Swetha Y, Reddy ER, Kumar JR, Trivedi R, Giribabu L, Sridhar B, Rathod B, Prakasham RS. Synthesis, characterization and antimicrobial evaluation of ferrocene–oxime ether benzyl 1H-1,2,3-triazole hybrids. NEW J CHEM 2019. [DOI: 10.1039/c9nj00660e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of ferrocene–oxime ether benzyl 1H-1,2,3 triazole hybrids has been synthesized by employing Cu(i) catalyzed azide–alkyne [3+2] cycloaddition reaction and their antibacterial and antifungal activities are reported.
Collapse
Affiliation(s)
- Yagnam Swetha
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Eda Rami Reddy
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Department of Chemistry
| | - Jakku Ranjith Kumar
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Lingamallu Giribabu
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-IICT Campus
- Hyderabad 500007
- India
- Polymer and Functional Materials Division
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Balaji Rathod
- Organic Synthesis and Process Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Reddy Shetty Prakasham
- Organic Synthesis and Process Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| |
Collapse
|
22
|
Marcote DC, Varela I, Fernández-Casado J, Mascareñas JL, López F. Gold(I)-Catalyzed Enantioselective Annulations between Allenes and Alkene-Tethered Oxime Ethers: A Straight Entry to Highly Substituted Piperidines and aza-Bridged Medium-Sized Carbocycles. J Am Chem Soc 2018; 140:16821-16833. [DOI: 10.1021/jacs.8b10388] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- David C. Marcote
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Iván Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Jaime Fernández-Casado
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Instituto de Química Orgánica General CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
23
|
Kosmalski T, Studzińska R, Daniszewska N, Ullrich M, Sikora A, Marszałł M, Modzelewska‐Banachiewicz B. Study of the Room-Temperature Synthesis of Oxime Ethers by using a Super Base. ChemistryOpen 2018; 7:551-557. [PMID: 30065906 PMCID: PMC6058178 DOI: 10.1002/open.201800098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
In this study, we present a convenient method for the synthesis of oxime ethers by reacting oximes with various chlorides (alkyl, functionalized alkyl, and benzyl) and with the subsequent use of a super base-pulverized potassium hydroxide in DMSO. The reactions take place at room temperature and the products are obtained in high yields. The final products were received within 2 min to 3 h. In addition, the compounds do not require chromatographic separation. The structure elucidation of the titled compounds was performed by using 1H NMR and 13C NMR spectroscopy as well as mass spectrometry. The presented method of synthesis for oxime ethers is environmentally friendly, because neither water cooling or heating of the reaction mixture/solvents (necessary for chromatographic purification) is required. The synthesis can be carried out very easily on a large scale.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic ChemistryFaculty of Pharmacy Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Renata Studzińska
- Department of Organic ChemistryFaculty of Pharmacy Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Natalia Daniszewska
- Department of Organic ChemistryFaculty of Pharmacy Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Małgorzata Ullrich
- Department of Organic ChemistryFaculty of ChemistryNicolaus Copernicus UniversityGagarina 787-100ToruńPoland
| | - Adam Sikora
- Medicinal Chemistry Department Faculty of Pharmacy, Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Michał Marszałł
- Medicinal Chemistry Department Faculty of Pharmacy, Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| | - Bożena Modzelewska‐Banachiewicz
- Department of Organic ChemistryFaculty of Pharmacy Collegium MedicumNicolaus Copernicus UniversityJurasza 285-067BydgoszczPoland
| |
Collapse
|
24
|
Shoba VM, Takacs JM. Remarkably Facile Borane-Promoted, Rhodium-Catalyzed Asymmetric Hydrogenation of Tri- and Tetrasubstituted Alkenes. J Am Chem Soc 2017; 139:5740-5743. [PMID: 28394591 PMCID: PMC5408738 DOI: 10.1021/jacs.7b02581] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Oxime-directed
catalytic asymmetric hydroboration is diverted to
catalytic asymmetric hydrogenation (CAH) upon the addition of a proton
source, such as MeOH, or by running the reaction under a hydrogen
atmosphere. A borane (e.g., pinacolborane) is required to promote
CAH. Tri- and tetrasubstituted alkenes, including the challenging
all-alkyl tetrasubstituted alkenes, undergo CAH with enantiomer ratios
(er) as high as 99:1. The mild reaction conditions, i.e., ambient
temperature, moderate reaction times, and the need for only a slight
excess of H2, contrast those used in most state-of-the-art
catalysts for related substrates.
Collapse
Affiliation(s)
- Veronika M Shoba
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0304, United States
| | - James M Takacs
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
25
|
Zhang W, Wu A, Xu H, Mo Y, Chen J, Shen L. Design, Synthesis, and Bioassay of Novel Compounds of Isolongifolenone Oxime Derivatives. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wu Zhang
- College of Chemistry and Chemical Engineering; Guangxi University for Nationalities; Nanning Guangxi, P. R. China
| | - Aiqun Wu
- College of Chemistry and Chemical Engineering; Guangxi University for Nationalities; Nanning Guangxi, P. R. China
| | - Haitang Xu
- College of Chemistry and Chemical Engineering; Guangxi University for Nationalities; Nanning Guangxi, P. R. China
| | - Yuxing Mo
- Development of Biological Test; Guangxi Tianyuan Biochemistry Co., Ltd.; Nanning Guangxi, P. R. China
| | - Jie Chen
- Development of Biological Test; Guangxi Tianyuan Biochemistry Co., Ltd.; Nanning Guangxi, P. R. China
| | - Liqun Shen
- College of Chemistry and Chemical Engineering; Guangxi University for Nationalities; Nanning Guangxi, P. R. China
- Key Laboratory of Development and Application of Forest Chemical of Guangxi; Nanning Guangxi, P. R. China
| |
Collapse
|