1
|
Zhao Y, Peng N, Gao W, Hu F, Zhang C, Wei X. ZnS and Reduced Graphene Oxide Nanocomposite-Based Non-Enzymatic Biosensor for the Photoelectrochemical Detection of Uric Acid. BIOSENSORS 2024; 14:488. [PMID: 39451701 PMCID: PMC11506723 DOI: 10.3390/bios14100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
In this work, we report a study of a zinc sulfide (ZnS) nanocrystal and reduced graphene oxide (RGO) nanocomposite-based non-enzymatic uric acid biosensor. ZnS nanocrystals with different morphologies were synthesized through a hydrothermal method, and both pure nanocrystals and related ZnS/RGO were characterized with SEM, XRD and an absorption spectrum and resistance test. It was found that compared to ZnS nanoparticles, the ZnS nanoflakes had stronger UV light absorption ability at the wavelength of 280 nm of UV light. The RGO significantly enhanced the electron transfer efficiency of the ZnS nanoflakes, which further led to a better photoelectrochemical property of the ZnS/RGO nanocomposites. The ZnS nanoflake/RGO nanocomposite-based biosensor showed an excellent uric acid detecting sensitivity of 534.5 μA·cm-2·mM-1 in the linear range of 0.01 to 2 mM and a detection limit of 0.048 μM. These results will help to improve non-enzymatic biosensor properties for the rapid and accurate clinical detection of uric acid.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Y.Z.); (N.P.); (W.G.); (F.H.); (C.Z.)
| |
Collapse
|
2
|
Hooe S, Thakur M, Lasarte-Aragonés G, Breger JC, Walper SA, Medintz IL, Ellis GA. Exploration of the In Vitro Violacein Synthetic Pathway with Substrate Analogues. ACS OMEGA 2024; 9:3894-3904. [PMID: 38284012 PMCID: PMC10809250 DOI: 10.1021/acsomega.3c08233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Evolution has gifted enzymes with the ability to synthesize an abundance of small molecules with incredible control over efficiency and selectivity. Central to an enzyme's role is the ability to selectively catalyze reactions in the milieu of chemicals within a cell. However, for chemists it is often desirable to extend the substrate scope of reactions to produce analogue(s) of a desired product and therefore some degree of enzyme promiscuity is often desired. Herein, we examine this dichotomy in the context of the violacein biosynthetic pathway. Importantly, we chose to interrogate this pathway with tryptophan analogues in vitro, to mitigate possible interference from cellular components and endogenous tryptophan. A total of nine tryptophan analogues were screened for by analyzing the substrate promiscuity of the initial enzyme, VioA, and compared to the substrate tryptophan. These results suggested that for VioA, substitutions at either the 2- or 4-position of tryptophan were not viable. The seven analogues that showed successful substrate conversion by VioA were then applied to the five enzyme cascade (VioABEDC) for the production of violacein, where l-tryptophan and 6-fluoro-l-tryptophan were the only substrates which were successfully converted to the corresponding violacein derivative(s). However, many of the other tryptophan analogues did convert to various substituted intermediaries. Overall, our results show substrate promiscuity with the initial enzyme, VioA, but much less for the full pathway. This work demonstrates the complexity involved when attempting to analyze substrate analogues within multienzymatic cascades, where each enzyme involved within the cascade possesses its own inherent promiscuity, which must be compatible with the remaining enzymes in the cascade for successful formation of a desired product.
Collapse
Affiliation(s)
- Shelby
L. Hooe
- National
Research Council, Washington, D.C. 20001, United States
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Meghna Thakur
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Guillermo Lasarte-Aragonés
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Joyce C. Breger
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Gregory A. Ellis
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
3
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105751] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Emir G, Karakaya S, Dilgin Y. Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide. J ELECTROCHEM SCI TE 2020. [DOI: 10.33961/jecst.2019.00605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Enhancement of Biosensors by Implementing Photoelectrochemical Processes. SENSORS 2020; 20:s20113281. [PMID: 32526947 PMCID: PMC7308923 DOI: 10.3390/s20113281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
Abstract
Research on biosensors is growing in relevance, taking benefit from groundbreaking knowledge that allows for new biosensing strategies. Electrochemical biosensors can benefit from research on semiconducting materials for energy applications. This research seeks the optimization of the semiconductor-electrode interfaces including light-harvesting materials, among other improvements. Once that knowledge is acquired, it can be implemented with biological recognition elements, which are able to transfer a chemical signal to the photoelectrochemical system, yielding photo-biosensors. This has been a matter of research as it allows both a superior suppression of background electrochemical signals and the switching ON and OFF upon illumination. Effective electrode-semiconductor interfaces and their coupling with biorecognition units are reviewed in this work.
Collapse
|
7
|
Development of an interference-minimized amperometric-FIA glucose biosensor at a pyrocatechol violet/glucose dehydrogenase-modified graphite pencil electrode. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-01036-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Stolarczyk K, Rogalski J, Bilewicz R. NAD(P)-dependent glucose dehydrogenase: Applications for biosensors, bioelectrodes, and biofuel cells. Bioelectrochemistry 2020; 135:107574. [PMID: 32498025 DOI: 10.1016/j.bioelechem.2020.107574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
This review discusses the physical and chemical properties of nicotinamide redox cofactor dependent glucose dehydrogenase (NAD(P) dependent GDH) and its extensive application in biosensors and bio-fuel cells. GDHs from different organisms show diverse biochemical properties (e.g., activity and stability) and preferences towards cofactors, such as nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+). The (NAD(P)+) play important roles in biological electron transfer, however, there are some difficulties related to their application in devices that originate from their chemical properties and labile binding to the GDH enzyme. This review discusses the electrode modifications aimed at immobilising NAD+ or NADP+ cofactors and GDH at electrodes. Binding of the enzyme was achieved by appropriate protein engineering techniques, including polymerisation, hydrophobisation or hydrophilisation processes. Various enzyme-modified electrodes applied in biosensors, enzymatic fuel cells, and biobatteries are compared. Importantly, GDH can operate alone or as part of an enzymatic cascade, which often improves the functional parameters of the biofuel cell or simply allows use of cheaper fuels. Overall, this review explores how NAD(P)-dependent GDH has recently demonstrated high potential for use in various systems to generate electricity from biological sources for applications in implantable biomedical devices, wireless sensors, and portable electronic devices.
Collapse
Affiliation(s)
- Krzysztof Stolarczyk
- Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland
| | - Jerzy Rogalski
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka Str. 19, 20-031 Lublin, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland.
| |
Collapse
|
9
|
Ayaz S, Karakaya S, Emir G, Dilgin DG, Dilgin Y. A novel enzyme-free FI-amperometric glucose biosensor at Cu nanoparticles modified graphite pencil electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104586] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Sabu C, Henna T, Raphey V, Nivitha K, Pramod K. Advanced biosensors for glucose and insulin. Biosens Bioelectron 2019; 141:111201. [DOI: 10.1016/j.bios.2019.03.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
|
11
|
Güneş M, Dilgin Y. Flow injection amperometric determination of NADH at a calmagite-modified pencil graphite electrode. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02446-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Karakaya S, Dilgin Y. Minimization of Interferences in Flow Injection Amperometric Glucose Biosensor Based on Oxidation of Enzymatically‐produced H
2
O
2. ELECTROANAL 2019. [DOI: 10.1002/elan.201800887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Serkan Karakaya
- Çanakkale Onsekiz Mart UniversityScience and Arts Faculty, Department of Chemistry 17100 Çanakkale Turkey
| | - Yusuf Dilgin
- Çanakkale Onsekiz Mart UniversityScience and Arts Faculty, Department of Chemistry 17100 Çanakkale Turkey
| |
Collapse
|
13
|
Teoman İ, Karakaya S, Dilgin Y. Sensitive and Rapid Flow Injection Amperometric Hydrazine Sensor using an Electrodeposited Gold Nanoparticle Graphite Pencil Electrode. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1591429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- İsmail Teoman
- Faculty of Science and Art, Chemistry Department, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serkan Karakaya
- Faculty of Science and Art, Chemistry Department, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Yusuf Dilgin
- Faculty of Science and Art, Chemistry Department, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
14
|
Wang L, Meng Y, Zhang C, Xiao H, Li Y, Tan Y, Xie Q. Improving Photovoltaic and Enzymatic Sensing Performance by Coupling a Core-Shell Au Nanorod@TiO 2 Heterostructure with the Bioinspired l-DOPA Polymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9394-9404. [PMID: 30758182 DOI: 10.1021/acsami.8b19284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The photoelectrochemistry (PEC) performance of TiO2 is somewhat limited by its wide band gap and low quantum efficiency, and the innovation of its composite materials provides a promising solution for an improved performance. Herein, a composite of a Au nanorod@TiO2 core-shell nanostructure (AuNR@TiO2) and a melanin-like l-DOPA polymer (PD) is designed and prepared, where the outer layer PD tethered by TiO2-hydroxyl complexation and the AuNR core can intensify the long-wavelength light harvesting, and the AuNR@TiO2 core-shell structure can strengthen the hot-electron transfer to TiO2. The photocurrent of PD/AuNR@TiO2 is 8.4-fold improved versus that of commercial TiO2, and the maximum incident photon-to-electron conversion efficiency reaches 65% in the UV-visible-near-infrared region. In addition, the novel PD/AuNR@TiO2 photocatalyst possesses the advantages of good biocompatibility and stability, which can act as a versatile PEC biosensing platform for providing a biocompatible environment and improving detection sensitivity. Herein, a PEC enzymatic biosensor of glucose is developed on the basis of the immobilization of dual enzyme [glucose oxidase (GOx) and horseradish peroxidase (HRP)] in PD and the signaling strategy of biocatalytic precipitation. In phosphate buffer containing glucose and 4-chloro-1-naphthol, the HRP-catalyzed oxidation of 4-chloro-1-naphthol by GOx-generated H2O2 can form a precipitate on the electrode, by which the decrement of photocurrent intensity is proportional to the common logarithm of glucose concentration. The linear detection range is from 0.05 μM to 10.0 mM glucose, with a limit of detection of 0.01 μM (S/N = 3). Glucose in some human serum samples is analyzed with satisfactory results.
Collapse
Affiliation(s)
- Linping Wang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Yue Meng
- Institute of Nano-Bio Diagnosis and Therapy, College of Chemistry and Materials Engineering , Hunan University of Arts and Science , Changde 415000 , China
| | - Chunxiu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Hongbo Xiao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Yunlong Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Yueming Tan
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Qingji Xie
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| |
Collapse
|
15
|
Cao L, Wang P, Chen L, Wu Y, Di J. A photoelectrochemical glucose sensor based on gold nanoparticles as a mimic enzyme of glucose oxidase. RSC Adv 2019; 9:15307-15313. [PMID: 35514836 PMCID: PMC9064256 DOI: 10.1039/c9ra02088h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/05/2019] [Indexed: 12/15/2022] Open
Abstract
This work reports the first construction of the ternary layers of ITO/PbS/SiO2/AuNPs nanostructure for development of photoelectrochemical (PEC) glucose sensor. Herein, the thioglycolic acid-capped PbS quantum dots was employed as a PEC active probe, which is very sensitive to oxygen. The small gold nanoparticles (AuNPs) were act as nanozyme (mimic enzyme of glucose oxidase) to catalytically oxidize glucose in the presence of oxygen, meanwhile consumed oxygen and then resulted in the decrease of cathodic photocurrent. The insertion layer of SiO2 nanoparticles between PbS and AuNPs could reduce efficiently the base current due to its low electroconductivity, which improved the detection limit. The proposed PEC sensor exhibited high sensitivity and gold selectivity towards glucose. The linear response of glucose concentrations ranged from 1.0 μM to 1.0 mM with detection limit of 0.46 μM (S/N = 3). The results suggest the potential of design and development of numerous nanozyme-based PEC biosensors with the advantage of the simplicity, stability, and efficiency. This work reports the first construction of the ternary layers of ITO/PbS/SiO2/AuNPs nanostructure for development of photoelectrochemical (PEC) glucose sensor.![]()
Collapse
Affiliation(s)
- Ling Cao
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Panpan Wang
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Li Chen
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Ying Wu
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Junwei Di
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| |
Collapse
|
16
|
Biosensing based on pencil graphite electrodes. Talanta 2018; 190:235-247. [DOI: 10.1016/j.talanta.2018.07.086] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
|
17
|
Karakaya S, Dilgin Y. Sensitive Flow-Injection Electrochemical Determination of Hydrogen Peroxide at a Palladium Nanoparticle-Modified Pencil Graphite Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1509986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Serkan Karakaya
- Faculty of Arts and Sciences, Department of Chemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Yusuf Dilgin
- Faculty of Arts and Sciences, Department of Chemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
18
|
Mohanty B, Naik KK, Sahoo S, Jena B, Chakraborty B, Rout CS, Jena BK. Efficient Photoelectrocatalytic Activity of CuWO4
Nanoplates towards the Oxidation of NADH Driven in Visible Light. ChemistrySelect 2018. [DOI: 10.1002/slct.201801137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bishnupad Mohanty
- CSIR-Institute of Minerals and Materials Technology; Bhubaneswar, Odisha; India-751013
- Department of Chemistry; Utkal University; Bhubaneswar-751004 Odisha
| | - Kusha Kumar Naik
- School of Basic Sciences; Indian Institute of Technology, Bhubaneswar, Odisha; India-751013
| | - Satyapriya Sahoo
- CSIR-Institute of Minerals and Materials Technology; Bhubaneswar, Odisha; India-751013
| | - Bijayalaxmi Jena
- Department of Chemistry; Utkal University; Bhubaneswar-751004 Odisha
| | | | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences; Jain University; Jain Global Campus, Ramanagaram; Bangalore-562112, India
| | - Bikash Kumar Jena
- CSIR-Institute of Minerals and Materials Technology; Bhubaneswar, Odisha; India-751013
- Academy of Scientific & Innovative Research, New Delhi, India-110001
| |
Collapse
|
19
|
Inorganic iron-sulfur clusters enhance electron transport when used for wiring the NAD-glucose dehydrogenase based redox system. Mikrochim Acta 2018; 185:337. [PMID: 29946767 PMCID: PMC6019433 DOI: 10.1007/s00604-018-2871-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/08/2018] [Indexed: 11/06/2022]
Abstract
Wiring the active site of an enzyme directly to an electrode is the key to ensuring efficient electron transfer for the proper performance of enzyme-based bioelectronic systems. Iron-sulfur complexes, the first link between proteins and mediating molecules in the biological electron transport chain(s), possess an intrinsic electron transport capability. The authors demonstrate the application of inorganic iron-sulfur clusters (Fe-S) viz. FeS, FeS2, Fe2S3, and Fe3S4, as molecular wires to mediate electron transport between a glucose-selective redox enzyme and the gold electrode. It is shown that Fe-S can emulate the functionality of the natural electron transport chain. Voltammetric studies indicate a significant improvement in electron transport, surface coverage, and resilience achieved by the Fe-S-based glucose anodes when compared to a conventional pyrroloquinoline quinone (PQQ)-based electrode. The Fe-S-based glucose anodes showed glucose oxidation at a potential of +0.5 V vs. Ag/AgCl with Tris-HCl buffer (pH 8) acting as a carrier. The current densities positively correlated with the concentrations of glucose in the range 0.1–100 mM displaying detection limits of 0.77 mM (FeS), 1.22 mM (FeS2), 2.95 mM (Fe2S3), and 14.57 mM (Fe3S4). The metal-anchorable sulfur atom, the strong π-coordinating iron atom, the favorable redox properties, low cost, and natural abundance make Fe-S an excellent electron-mediating relay capable of wiring redox active sites to electrode surfaces. Schematic representation of inorganic iron-sulfur clusters used as molecular wires to facilitate direct electron transfer between NAD-glucose dehydrogenase and the gold electrode. The iron-sulfur based glucose anodes improve current response to selectively sense glucose concentrations in the range 0.1–100 mM. ![]()
Collapse
|
20
|
Dilgin DG, Ertek B, Dilgin Y. A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1335-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Ayaz S, Dilgin Y. Flow injection amperometric determination of hydrazine based on its electrocatalytic oxidation at pyrocatechol violet modified pencil graphite electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Dilgin DG. Determination of Calcium Dobesilate by Differential Pulse Voltammetry at a Disposable Pencil Graphite Electrode. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1323335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Didem Giray Dilgin
- Biga Vocational School, Çanakkale Onsekiz Mart University, Biga, Çanakkale, Turkey
| |
Collapse
|
23
|
Emir G, Dilgin Y. Flow Injection Analysis of Sulfide at a Calmagite-Modified Pencil Graphite Electrode. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1317782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gamze Emir
- Department of Chemistry, Faculty of Arts and Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Yusuf Dilgin
- Department of Chemistry, Faculty of Arts and Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
24
|
Zhao WW, Xu JJ, Chen HY. Photoelectrochemical enzymatic biosensors. Biosens Bioelectron 2017; 92:294-304. [DOI: 10.1016/j.bios.2016.11.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022]
|
25
|
Karakaya S, Dilgin Y. Flow Injection Amperometric Analysis of H2
O2
at Platinum Nanoparticles Modified Pencil Graphite Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Serkan Karakaya
- Çanakkale Onsekiz Mart University; Faculty of Science and Art; Department of Chemistry; 17020 Çanakkale Turkey
| | - Yusuf Dilgin
- Çanakkale Onsekiz Mart University; Faculty of Science and Art; Department of Chemistry; 17020 Çanakkale Turkey
| |
Collapse
|
26
|
Gopalan AI, Muthuchamy N, Lee KP. A novel bismuth oxychloride-graphene hybrid nanosheets based non-enzymatic photoelectrochemical glucose sensing platform for high performances. Biosens Bioelectron 2017; 89:352-360. [DOI: 10.1016/j.bios.2016.07.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
|
27
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|