Superhydrophobic modification of cellulosic paper-based materials: Fabrication, properties, and versatile applications.
Carbohydr Polym 2023;
305:120570. [PMID:
36737208 DOI:
10.1016/j.carbpol.2023.120570]
[Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Cellulose is the cheapest and mostly widespread green raw material on earth. Due to the easy and versatile developed modification of cellulose, many cellulosic paper-based sustainable materials and their multifunctional applications have attained increasing interest under the background of the implementation of the "plastic ban" policy. However, intrinsic cellulose paper is hydrophilic and non-water-proof, which highly limited its application, thus becoming a bottleneck for the development of "cellulosic paper-based plastic replacement". Unquestioningly, the superhydrophobic modification of cellulosic paper-based materials and the extension of their high value-added applications are highly desired, which is the main content of this review. More importantly, we presented the comprehensive discussion of the functionalized applications of superhydrophobic cellulosic paper-based materials ranging from conventional products to high value-added functional materials such as paper straw and paper mulch film for the first time, which have great industrialization potential and value. This review would offer the valuable guidance and insightful information for the rational construction of sustainable superhydrophobic cellulosic paper for advanced functional devices.
Collapse