1
|
Garrido M, Barrejón M, Berrocal JA, Syrgiannis Z, Prato M. Polyaromatic cores for the exfoliation of popular 2D materials. NANOSCALE 2022; 14:8986-8994. [PMID: 35699137 DOI: 10.1039/d2nr00894g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) nanomaterials have attracted interest from the scientific community due to their unique properties. The production of these materials has been carried out by diverse methodologies, the liquid phase exfoliation being the most promising one due to its simplicity and potential scalability. The use of several stabilizers allows to obtain dispersions of these 2D nanomaterials in solvents with low boiling points. Herein we describe a general exfoliation method for different 2D materials employing a biphasic water/dichloromethane system and two different (poly)aromatic hydrocarbons (PAHs). This method allows us to obtain dispersions of the exfoliated 2D materials with high concentrations in the organic solvent. Due to the low boiling point of dichloromethane, and therefore its easy removal, the obtained dispersions can be employed as additives for different composites. We corroborate that the exfoliation efficiency is improved due to the π-π and van der Waals interactions between the PAHs and the layers of the 2D materials.
Collapse
Affiliation(s)
- Marina Garrido
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Università degli Studi di Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Myriam Barrejón
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Università degli Studi di Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - José Augusto Berrocal
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Zois Syrgiannis
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Università degli Studi di Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Università degli Studi di Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
2
|
F. de A. Silva, Lima G, Demets GJF. Naphthalene Diimides and Vanadium Pentoxide Composite Electrodes for Lithium Ion Batteries. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522060106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
4
|
Friebe C, Lex‐Balducci A, Schubert US. Sustainable Energy Storage: Recent Trends and Developments toward Fully Organic Batteries. CHEMSUSCHEM 2019; 12:4093-4115. [PMID: 31297974 PMCID: PMC6790600 DOI: 10.1002/cssc.201901545] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/04/2019] [Indexed: 05/12/2023]
Abstract
In times of spreading mobile devices, organic batteries represent a promising approach to replace the well-established lithium-ion technology to fulfill the growing demand for small, flexible, safe, as well as sustainable energy storage solutions. In the last years, large efforts have been made regarding the investigation and development of batteries that use organic active materials since they feature superior properties compared to metal-based, in particular lithium-based, energy-storage systems in terms of flexibility and safety as well as with regard to resource availability and disposal. This Review compiles an overview over the most recent studies on the topic. It focuses on the different types of applied active materials, covering both known systems that are optimized and novel structures that aim at being established.
Collapse
Affiliation(s)
- Christian Friebe
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstraße 1007743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Alexandra Lex‐Balducci
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstraße 1007743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstraße 1007743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
5
|
Jing F, Huang T, Tao G, Ma L, Lu D, Liu R, Xi X, Wu D. An acid-pasting strategy towards PTCDA based high performance lithium/sodium ion battery cathodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Liyanage W, Rubeo PW, Nilsson BL. Redox-sensitive reversible self-assembly of amino acid-naphthalene diimide conjugates. Interface Focus 2017; 7:20160099. [PMID: 29147549 PMCID: PMC5665789 DOI: 10.1098/rsfs.2016.0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Peptide and low molecular weight amino acid-based materials that self-assemble in response to environmental triggers are highly desirable candidates in forming functional materials with tunable biophysical properties. In this paper, we explore redox-sensitive self-assembly of cationic phenylalanine derivatives conjugated to naphthalene diimide (NDI). Self-assembly of the cationic Phe-NDI conjugates into nanofibrils was induced in aqueous solvent at high ionic strength. Under reducing conditions, these self-assembled Phe-NDI conjugate fibrils underwent a morphological change to non-fibril aggregates. Upon reoxidation, the initially observed fibrils were reformed. The study herein provides an interesting strategy to effect reversible switching of the structure of supramolecular materials that can be applied to the development of sophisticated stimulus-responsive materials.
Collapse
Affiliation(s)
| | | | - Bradley L. Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| |
Collapse
|
7
|
Lakraychi A, Fahsi K, Aymard L, Poizot P, Dolhem F, Bonnet JP. Carboxylic and sulfonic N-substituted naphthalene diimide salts as highly stable non-polymeric organic electrodes for lithium batteries. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Reiner BR, Foxman BM, Wade CR. Electrochemical and structural investigation of the interactions between naphthalene diimides and metal cations. Dalton Trans 2017; 46:9472-9480. [DOI: 10.1039/c7dt02067h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic voltammetry and X-ray diffraction studies reveal the strength and nature of the interactions between Li+/Mg2+ and reduced naphthalene diimides.
Collapse
Affiliation(s)
| | | | - Casey R. Wade
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| |
Collapse
|
9
|
Al Kobaisi M, Bhosale SV, Latham K, Raynor AM, Bhosale SV. Functional Naphthalene Diimides: Synthesis, Properties, and Applications. Chem Rev 2016; 116:11685-11796. [DOI: 10.1021/acs.chemrev.6b00160] [Citation(s) in RCA: 557] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mohammad Al Kobaisi
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sidhanath V. Bhosale
- Polymers
and Functional Materials Division, CSIR-Indian Institute of Chemical Technology
, Hyderabad, Telangana-500007, India
| | - Kay Latham
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Aaron M. Raynor
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sheshanath V. Bhosale
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| |
Collapse
|