1
|
Wang S, Neufurth M, Schepler H, Tan R, She Z, Al-Nawas B, Wang X, Schröder HC, Müller WEG. Acceleration of Wound Healing through Amorphous Calcium Carbonate, Stabilized with High-Energy Polyphosphate. Pharmaceutics 2023; 15:pharmaceutics15020494. [PMID: 36839816 PMCID: PMC9961744 DOI: 10.3390/pharmaceutics15020494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Amorphous calcium carbonate (ACC), precipitated in the presence of inorganic polyphosphate (polyP), has shown promise as a material for bone regeneration due to its morphogenetic and metabolic energy (ATP)-delivering properties. The latter activity of the polyP-stabilized ACC ("ACC∙PP") particles is associated with the enzymatic degradation of polyP, resulting in the transformation of ACC into crystalline polymorphs. In a novel approach, stimulated by these results, it was examined whether "ACC∙PP" also promotes the healing of skin injuries, especially chronic wounds. In in vitro experiments, "ACC∙PP" significantly stimulated the migration of endothelial cells, both in tube formation and scratch assays (by 2- to 3-fold). Support came from ex vivo experiments showing increased cell outgrowth in human skin explants. The transformation of ACC into insoluble calcite was suppressed by protein/serum being present in wound fluid. The results were confirmed in vivo in studies on normal (C57BL/6) and diabetic (db/db) mice. Topical administration of "ACC∙PP" significantly accelerated the rate of re-epithelialization, particularly in delayed healing wounds in diabetic mice (day 7: 1.5-fold; and day 13: 1.9-fold), in parallel with increased formation/maturation of granulation tissue. The results suggest that administration of "ACC∙PP" opens a new strategy to improve ATP-dependent wound healing, particularly in chronic wounds.
Collapse
Affiliation(s)
- Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Rongwei Tan
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | - Zhending She
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | - Bilal Al-Nawas
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, D-55131 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
- Correspondence: (H.C.S.); (W.E.G.M.)
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
- Correspondence: (H.C.S.); (W.E.G.M.)
| |
Collapse
|
2
|
Barros N, Kim H, Goudie MJ, Lee K, Bandaru P, Banton EA, Sarikhani E, Sun W, Zhang S, Cho HJ, Hartel MC, Ostrovidov S, Ahadian S, Hussain S, Ashammakhi N, Dokmeci MR, Herculano RD, Lee J, Khademhosseini A. Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication 2020; 13. [PMID: 32650324 DOI: 10.1088/1758-5090/aba503] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
The skin serves a substantial number of physiological purposes and is exposed to numerous biological and chemical agents owing to its large surface area and accessibility. Yet, current skin models are limited in emulating the multifaceted functions of skin tissues due to a lack of effort on the optimization of biomaterials and techniques at different skin layers for building skin frameworks. Here, we use biomaterial-based approaches and bioengineered techniques to develop a 3D skin model with layers of endothelial cell networks, dermal fibroblasts, and multilayered keratinocytes. Analysis of mechanical properties of gelatin methacryloyl (GelMA)-based bioinks mixed with different portions of alginate revealed bioprinted endothelium could be better modeled to optimize endothelial cell viability with a mixture of 7.5% GelMA and 2% alginate. Matrix stiffness plays a crucial role in modulating produced levels of Pro-Collagen I alpha-1 and matrix metalloproteinase-1 in human dermal fibroblasts and affecting their viability, proliferation, and spreading. Moreover, seeding human keratinocytes with gelatin-coating multiple times proves helpful in reducing culture time to create multilayered keratinocytes while maintaining their viability. The ability to fabricate selected biomaterials for each layer of skin tissues has implications in the biofabrication of skin systems for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Natan Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - Hanjun Kim
- University of California Los Angeles, Los Angeles, California, 90095, UNITED STATES
| | - Marcus J Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - KangJu Lee
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Praveen Bandaru
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Ethan A Banton
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | | | - Wujin Sun
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Shiming Zhang
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Hyun-Jong Cho
- Pharmacy, Kangwon National University, Chuncheon, Gangwon-do, Korea (the Republic of)
| | - Martin C Hartel
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | | | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - Saber Hussain
- , Molecular Bioeffects Branch, Wright Patterson AFB, Ohio, UNITED STATES
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - Mehmet R Dokmeci
- Radiology, UCLA, CNSI 4528, 570 Westwood Plaza, Los Angeles, California, 90095, UNITED STATES
| | | | - Junmin Lee
- Terasaki Institute, Los Angeles, California, UNITED STATES
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics, UCLA, Los Angeles, California, UNITED STATES
| |
Collapse
|
3
|
Li Z, Jiang L, Tao T, Su W, Guo Y, Yu H, Qin J. Assessment of cadmium-induced nephrotoxicity using a kidney-on-a-chip device. Toxicol Res (Camb) 2017; 6:372-380. [PMID: 30090506 DOI: 10.1039/c6tx00417b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
Cadmium (Cd) is a common environmental pollutant. Its effects on human health have attracted great attention. The kidney is the organ that is the most affected by Cd exposure. Thus, it is highly desirable to develop a reliable model to evaluate Cd-induced nephrotoxicity in vitro. We present a kidney-on-a-chip with three compartmentalized culture chambers to examine Cd-induced nephrotoxicity. The culture and collection channels represent the capillary and the glomerular capsule sides of the glomerular filtration barrier, respectively. Isolated primary rat glomerular endothelial cells (GECs) were cultured on the side surface of the middle gel channel. The integrated GEC layer demonstrated the selective permeability of the renal barrier. Therefore, it was further utilized to study the nephrotoxicity induced by Cd exposure at different concentrations. Cd induced significant cytotoxicity and disrupted the expression of tight junction protein ZO-1 in a dose-dependent manner. Moreover, Cd exposure increased the permeability of the endothelial layer to large molecules, immunoglobulin G and albumin. These results facilitate the understanding of the underlying mechanism of kidney dysfunction and glomerular disease. This is the first study on Cd-induced nephrotoxicity using primary GECs in a microfluidic device. The kidney-on-a-chip device enables direct visualization and quantitative analysis of GEC responses to Cd in real time. It may provide a micro-scale platform based on the human system for nephrotoxicity testing under varying environmental exposure.
Collapse
Affiliation(s)
- Zhongyu Li
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China . .,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Lei Jiang
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China .
| | - Tingting Tao
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China .
| | - Wentao Su
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China .
| | - Yaqiong Guo
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China . .,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Hao Yu
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China .
| | - Jianhua Qin
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China . .,University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
4
|
Lang Q, Ren Y, Hobson D, Tao Y, Hou L, Jia Y, Hu Q, Liu J, Zhao X, Jiang H. In-plane microvortices micromixer-based AC electrothermal for testing drug induced death of tumor cells. BIOMICROFLUIDICS 2016; 10:064102. [PMID: 27917250 PMCID: PMC5106430 DOI: 10.1063/1.4967455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/28/2016] [Indexed: 05/20/2023]
Abstract
Herein, we first describe a perfusion chip integrated with an AC electrothermal (ACET) micromixer to supply a uniform drug concentration to tumor cells. The in-plane fluid microvortices for mixing were generated by six pairs of reconstructed novel ACET asymmetric electrodes. To enhance the mixing efficiency, the novel ACET electrodes with rotating angles of 0°, 30°, and 60° were investigated. The asymmetric electrodes with a rotating angle of 60° exhibited the highest mixing efficiency by both simulated and experimental results. The length of the mixing area is 7 mm, and the mixing efficiency is 89.12% (approximate complete mixing) at a voltage of 3 V and a frequency of 500 kHz. The applicability of our micromixer with electrodes rotating at 60° was demonstrated by the drug (tamoxifen) test of human breast cancer cells (MCF-7) for five days, which implies that our ACET in-plane microvortices micromixer has great potential for the application of drug induced rapid death of tumor cells and mixing of biomaterials in organs-on-a-chip systems.
Collapse
Affiliation(s)
| | | | - Divia Hobson
- Interdisciplinary division of Biomedical Engineering, the Hong King Polytechnique University , Hunghom, Hong Kong, China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, China
| | - Likai Hou
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, China
| | - Yankai Jia
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, China
| | - Qingming Hu
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, China
| | - Jiangwei Liu
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, China
| | - Xin Zhao
- Interdisciplinary division of Biomedical Engineering, the Hong King Polytechnique University , Hunghom, Hong Kong, China
| | | |
Collapse
|