1
|
Dong S, Li X, Wang S, Zhang D, Chen Y, Xiao F, Wang Y. Adsorption-electrochemical mediated precipitation for phosphorus recovery from sludge filter wastewater with a lanthanum-modified cellulose sponge filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165545. [PMID: 37454846 DOI: 10.1016/j.scitotenv.2023.165545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, the sludge filter wastewater is confirmed to investigate the effects of adsorption-electrochemical mediated precipitation (EMP) driven phosphorus recovery on the basis of lanthanum-modified cellulose sponge filter (LCLM) material. The adsorption-EMP method relies on in situ recovery phosphate (P) from the used desorption agent (NaOH-NaCl binary solution) via the formation of Ca5(PO4)3OH all while preserving the alkalinity of the desorption agents which benefited long-term application. The lanthanum content of LCLM was 9.0 mg/g, and the adsorption capacity reached 226.1 ± 15.2 mg P/g La at an equilibrium concentration of 3.9 mg P/L. After adsorption, 55.7 % of P was recovered, and the corresponding alkalinity increased from 1.9 mmol/L to 2.2 mmol/L. Adsorption mechanism analysis revealed that the high lanthanum usage of LCLM was attributed to the synergistic effect of the lattice oxygen of LaO and LaPO4·0.5H2O crystallite formation. Additionally, the Ca5(PO4)3OH was found precipitated in the precipitation in the cathode chamber (P-CC) rather than on the surface/section of cation exchange membrane (CEM) and cathode indicating that the P recovery process was controlled by the saturation of CaP species in the EMP system and the electromigration effect. These findings present a new strategy to promote the effective utilization of rare earth elements for P adsorption and demonstrate the potential application of adsorption-EMP systems in dephosphorization for wastewater treatment.
Collapse
Affiliation(s)
- Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Siying Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Daxin Zhang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yuchi Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Xiao
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Li L, Zhu Z, Ni J, Zuo X. Sustainable phosphorus adsorption and recovery from aqueous solution by a novel recyclable Ca-PAC-CTS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165444. [PMID: 37442468 DOI: 10.1016/j.scitotenv.2023.165444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Phosphorus removal has been explored for a long time, however sustainable phosphorus adsorption and recovery with adsorbents recycling is rarely reported. This work proposes a sustainable phosphorus recycling route with calcium-modified powdered activated carbon with chitosan (Ca-PAC-CTS). The morphology, functional groups and crystal structure of Ca-PAC-CTS were characterized. The maximum phosphorus adsorption capacity was 16.73 mg/g Ca-PAC-CTS with Langmuir model at 298 K. Stable phosphorus sorption on Ca-PAC-CTS could be observed at the large range of pH (4- 10) when coexisting with NO3-, SO42-, Cl- and F-, except HCO3-. 98.95 % The recovery of adsorbed phosphorus could get to 98.95 % using 0.05 M sulfuric acid solution, and the phosphate adsorption efficiency through Ca-PAC-CTS remained to be more than 80 % after five adsorption-desorption cycles, suggesting that Ca-PAC-CTS was one of the promising adsorbents for sustainable removal and recovery of phosphorus in aqueous solution.
Collapse
Affiliation(s)
- Lucheng Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zehua Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jie Ni
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaojun Zuo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
3
|
Lv N, Li X. Phosphorus removal from wastewater using Ca-modified attapulgite: Fixed-bed column performance and breakthrough curves analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116905. [PMID: 36521218 DOI: 10.1016/j.jenvman.2022.116905] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The adsorbent calcium-modified attapulgite (Ca-GAT) prepared by calcium chloride modification and high temperature treatment (700 °C) has proved to remove phosphorus in low-concentration phosphorus wastewater in batch adsorption experiments. Dynamic adsorption performance and industrial application potential still need further determination. This study explored the effects of various parameters on the dynamic phosphorus adsorption, including initial phosphate concentration (2-10 mg/L), flow rate (1-3 mL/min) and adsorption bed height (2-6 cm). Phosphorus adsorption ability improved and the breakthrough time increased with the increase of bed height, flow rate, and a decrease in initial phosphorus concentration. Breakthrough curves fitted four models, the Adams-Bohart, Thomas, Yoon-Nelson and Bed depth service time (BDST). The maximum adsorption amount determined by the Thomas model obtained 13.477 mg/g. The saturated fixed-bed column were regenerated with NaOH, NaOH + NaCl and HCl, among which 0.5 mol/L NaOH had the best regeneration effect. During the utilization of a large fixed-bed to treat the actual membrane bioreactor (MBR) effluent, the breakthrough point (0.5 mg/L) was obtained after 177 h. These results implied that Ca-GAT had an application potential for the treatment of low-concentration phosphorus wastewater (2 mg/L).
Collapse
Affiliation(s)
- Na Lv
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China.
| |
Collapse
|
4
|
Mitrogiannis D, Psychoyou M, Baziotis I, Mavrogonatos C, Koukouzas N, Anastopoulos I, Fyrillas M, Inglezakis VJ. Phosphate removal by Ca(OH)2-treated natural minerals: experimental and modeling studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Ribeiro ICA, Vasques ICF, Teodoro JC, Guerra MBB, da Silva Carneiro JS, Melo LCA, Guilherme LRG. Fast and effective arsenic removal from aqueous solutions by a novel low-cost eggshell byproduct. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147022. [PMID: 34088149 DOI: 10.1016/j.scitotenv.2021.147022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Developing alternative green solutions for local and correct recycling of eggshells waste (ES) are needed by the egg-processing industries. In this study, we proposed transforming ES into a novel low-cost chemical compound named hydroxyl-eggshell (ES-OH) and investigated its capacity for arsenic (As) removal from aqueous solutions. Laboratory experiments were conducted to investigate the effects of ES-OH doses, pH, kinetics, and isotherms on As removal efficiency. The kinetics study showed that ES-OH removed nearly all As from solution in less than 15 min. The pseudo-second-order model described the process, and the maximum As removal capacity predicted by the Langmuir isotherm model was 529 mg g-1. Using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersive X-ray detector (SEM-EDS), and X-ray diffraction (XRD), we found that the As removal mechanism by ES-OH was due to vladimirite precipitation, followed by weak electrostatic interactions between the precipitate and arsenate ions. Finally, after an economic analysis, we conclude that besides being a novel and economical income source, egg-producing companies might implement the ES-OH production process as a local environmentally-friendly way of recycling eggshells and reducing water As contamination.
Collapse
|
6
|
Mahadevan H, Krishnan KA, Pillai RR, Sudhakaran S. Assessment of urban river water quality and developing strategies for phosphate removal from water and wastewaters: Integrated monitoring and mitigation studies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2571-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
7
|
Grela A, Łach M, Mikuła J. An Efficacy Assessment of Phosphate Removal from Drainage Waters by Modified Reactive Material. MATERIALS 2020; 13:ma13051190. [PMID: 32155873 PMCID: PMC7085026 DOI: 10.3390/ma13051190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022]
Abstract
Phosphates may pose a threat to the aquatic ecosystem when there is a connection or a path between the soil and the aquatic ecosystem. Runoff and drainage ditches connect arable land with the waters of the receiver. Phosphates in the runoff and the ditches contribute to the negative phenomenon of surface water eutrophication. In order to prevent it, certain reactive materials are used which are capable of the selective removal of compounds by way of sorption or precipitation. Zeolites can be distinguished among the many reactive materials. Within the present analysis, the modification of a reactive material containing zeolites was carried out using calcium hydroxide solutions of different concentrations. A certain concentration of calcium hydroxide was created for use in further studies. In order to characterise the new material, an analysis was done of the chemical and mineral composition, as well as the porous texture and morphology. The efficacy of phosphate removal for its typical concentrations in drainage waters in Poland was confirmed by way of an experiment. Using a modified reactive material as an element of landscape structures may reduce the negative impact of phosphates on the quality of surface water.
Collapse
Affiliation(s)
- Agnieszka Grela
- Faculty of Environmental and Power Engineering, Cracow University of Technology, 31-155 Kraków, Poland
- Correspondence: ; Tel.: +48-126283133
| | - Michał Łach
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (M.Ł.); (J.M.)
| | - Janusz Mikuła
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (M.Ł.); (J.M.)
| |
Collapse
|