1
|
Ozcelik Kazancioglu E, Batibay GS, Uner A, Arsu N. Thermal and morphological investigation of the effect of
POSS
‐(
PEG
2000
)
8
addition to
UV
curable
PEGMEA
/
PEGDA
formulation and simultaneously in situ formed silver nanoparticles. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Gonul S. Batibay
- Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Ahmet Uner
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| | - Nergis Arsu
- Department of Chemistry Yildiz Technical University Istanbul Turkey
| |
Collapse
|
2
|
Fan L, Wang X, Wu D. Polyhedral Oligomeric Silsesquioxanes (
POSS
)‐based Hybrid Materials: Molecular Design, Solution
Self‐Assembly
and Biomedical Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linfeng Fan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
3
|
Liu S, Guo R, Li C, Lu C, Yang G, Wang F, Nie J, Ma C, Gao M. POSS hybrid hydrogels: A brief review of synthesis, properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110180] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Zhou Y, Zhang Y, Dai Z, Jiang F, Tian J, Zhang W. A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker. Biomater Sci 2020; 8:3359-3369. [DOI: 10.1039/d0bm00290a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supramolecular hydrogels based on host–guest interactions have drawn considerable attention due to their unique properties and promising applications.
Collapse
Affiliation(s)
- Yang Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Fang Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
5
|
Chen M, Zhang Y, Xie Q, Zhang W, Pan X, Gu P, Zhou H, Gao Y, Walther A, Fan X. Long-Term Bone Regeneration Enabled by a Polyhedral Oligomeric Silsesquioxane (POSS)-Enhanced Biodegradable Hydrogel. ACS Biomater Sci Eng 2019; 5:4612-4623. [DOI: 10.1021/acsbiomaterials.9b00642] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People’s Republic of China
| | - Qing Xie
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People’s Republic of China
| | - Xiuwei Pan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People’s Republic of China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| | - Huifang Zhou
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People’s Republic of China
| | - Andreas Walther
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Strasse 31, Freiburg 79104, Germany
- Freiburg Materials Research Center, Albert-Ludwigs-University Freiburg, Stefan-Meier-Strasse 21, Freiburg 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| |
Collapse
|
6
|
Li H, Dai J, Xu Q, Lu C, Yang G, Wang F, Nie J, Hu X, Dong N, Shi J. Synthesis of thiol-terminated PEG-functionalized POSS cross-linkers and fabrication of high-strength and hydrolytic degradable hybrid hydrogels in aqueous phase. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Kim NK, Cha EJ, Jung M, Kim J, Jeong GJ, Kim YS, Choi WJ, Kim BS, Kim DG, Lee JC. 3D hierarchical scaffolds enabled by a post-patternable, reconfigurable, and biocompatible 2D vitrimer film for tissue engineering applications. J Mater Chem B 2019. [DOI: 10.1039/c9tb00221a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A mechanically tissue-like, biocompatible vitrimer yields 3D hierarchical tissue engineering scaffolds via hot embossing patterning and additional reconfiguration processes.
Collapse
Affiliation(s)
- Na Kyung Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Eun Jung Cha
- Advanced Materials Division, Korea Research Institute of Chemical Technology
- Daejeon 34114
- Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jinseok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Gun-Jae Jeong
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Yong Seok Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology
- Daejeon 34114
- Republic of Korea
| | - Woo Jin Choi
- Chemical Materials Solutions Center
- Korea Research Institute of Chemical Technology
- Daejeon 34114
- Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology
- Daejeon 34114
- Republic of Korea
| | - Jong-Chan Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
8
|
Zhang Y, Chen M, Tian J, Gu P, Cao H, Fan X, Zhang W. In situ bone regeneration enabled by a biodegradable hybrid double-network hydrogel. Biomater Sci 2019; 7:3266-3276. [DOI: 10.1039/c9bm00561g] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biodegradable hybrid double-network hydrogel for stem cell-enhanced bone regeneration.
Collapse
Affiliation(s)
- Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
9
|
Arsalani N, Kazeminava F, Akbari A, Hamishehkar H, Jabbari E, Kafil HS. Synthesis of polyhedral oligomeric silsesquioxane nano‐crosslinked poly(ethylene glycol)‐based hybrid hydrogels for drug delivery and antibacterial activity. POLYM INT 2018. [DOI: 10.1002/pi.5748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Fahimeh Kazeminava
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Ali Akbari
- Department of ChemistryUniversity of Maragheh Maragheh Iran
| | - Hamed Hamishehkar
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Esmaiel Jabbari
- Department of Chemical EngineeringUniversity of South Carolina Columbia SC USA
| | - Hossein S Kafil
- Biotechnology Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
10
|
Detailed characterization of POSS-poly(ethylene glycol) interaction with model phospholipid membrane at the air/water interface. Colloids Surf B Biointerfaces 2018; 171:167-175. [DOI: 10.1016/j.colsurfb.2018.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/23/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
|
11
|
Synthesis and characterization of amphiphilic triblock copolymers including β-alanine/α-methyl-β-alanine and ethylene glycol by “click” chemistry. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2561-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Mehrban N, Bowen J, Tait A, Darbyshire A, Virasami AK, Lowdell MW, Birchall MA. Silsesquioxane polymer as a potential scaffold for laryngeal reconstruction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:565-574. [PMID: 30184783 PMCID: PMC6134134 DOI: 10.1016/j.msec.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 06/13/2018] [Accepted: 07/01/2018] [Indexed: 02/01/2023]
Abstract
Cancer, disease and trauma to the larynx and their treatment can lead to permanent loss of structures critical to voice, breathing and swallowing. Engineered partial or total laryngeal replacements would need to match the ambitious specifications of replicating functionality, outer biocompatibility, and permissiveness for an inner mucosal lining. Here we present porous polyhedral oligomeric silsesquioxane-poly(carbonate urea) urethane (POSS-PCUU) as a potential scaffold for engineering laryngeal tissue. Specifically, we employ a precipitation and porogen leaching technique for manufacturing the polymer. The polymer is chemically consistent across all sample types and produces a foam-like scaffold with two distinct topographies and an internal structure composed of nano- and micro-pores. While the highly porous internal structure of the scaffold contributes to the complex tensile behaviour of the polymer, the surface of the scaffold remains largely non-porous. The low number of pores minimise access for cells, although primary fibroblasts and epithelial cells do attach and proliferate on the polymer surface. Our data show that with a change in manufacturing protocol to produce porous polymer surfaces, POSS-PCUU may be a potential candidate for overcoming some of the limitations associated with laryngeal reconstruction and regeneration.
Collapse
Affiliation(s)
- Nazia Mehrban
- Division of Surgery, University College London, London, WC1E 6BT, United Kingdom.
| | - James Bowen
- School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Angela Tait
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, United Kingdom
| | - Arnold Darbyshire
- Division of Surgery, University College London, London, WC1E 6BT, United Kingdom
| | - Alex K Virasami
- Department of Histopathology, University College London, London, WC1N 3JH, United Kingdom
| | - Mark W Lowdell
- Department of Haematology, University College London, London, NW3 2QG, United Kingdom
| | - Martin A Birchall
- UCL Ear Institute, University College London, London, WC1X 8DA, United Kingdom
| |
Collapse
|
13
|
Hydrolytically degradable POSS-PEG hybrid hydrogels prepared in aqueous phase with tunable mechanical properties, swelling ratio and degradation rate. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Tong Y, Zhang Y, Liu Y, Cai H, Zhang W, Tan WS. POSS-enhanced thermosensitive hybrid hydrogels for cell adhesion and detachment. RSC Adv 2018; 8:13813-13819. [PMID: 35539329 PMCID: PMC9079822 DOI: 10.1039/c8ra01584h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/05/2018] [Indexed: 11/21/2022] Open
Abstract
Thermosensitive poly(N-isopropylacrylamide) (PNIPAM)-based substrates have presented great promise in cell sheet engineering. However, non-functionalized PNIPAM cannot be well applied for cell cultivation, due to the low cell adhesion. Herein, to enhance PNIPAM-based substrates and to promote cell proliferation and detachment, a polyhedral oligomeric silsesquioxane (POSS) nanoscale inorganic enhanced agent has been introduced into PNIPAM matrices to construct POSS-containing hybrid hydrogels. The hydrogels were facilely prepared using POSS as a cross-linker via one-pot crosslinking reaction under UV irradiation. The swelling behavior, thermal stability and the mechanical properties of POSS–PNIPAM hybrid hydrogels have been evaluated and they are all dependent on the content of POSS. The in vitro experiment confirms that human amniotic mesenchymal stem cells (hAMSCs) exhibit clearly enhanced adhesion and proliferation on the substrates of POSS–PNIPAM hybrid hydrogels in comparison to the pure PNIPAM hydrogel without POSS. Based on the thermal-responsiveness of PNIPAM, the proliferated cells are easily released without damage from the surface of hybrid hydrogels. Therefore, POSS-enhanced PNIPAM hybrid hydrogels provide a unique approach for harvesting anchorage dependent stem cells. Thermosensitive poly(N-isopropylacrylamide) (PNIPAM)-based substrates have presented great promise in cell sheet engineering.![]()
Collapse
Affiliation(s)
- Yudong Tong
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yangyang Liu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
15
|
El Aziz Y, Mehrban N, Taylor PG, Birchall MA, Bowen J, Bassindale AR, Pitak MB, Coles SJ. Facile synthesis of novel hybrid POSS biomolecules via “Click” reactions. RSC Adv 2017. [DOI: 10.1039/c7ra07915j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel alkyne-terminated cubic-octameric POSS was synthesised in high yield and click chemistry has been used to attach bio-oligomers.
Collapse
Affiliation(s)
- Youssef El Aziz
- The Open University
- Faculty of Science, Technology, Engineering & Mathematics
- Milton Keynes
- UK
| | - Nazia Mehrban
- University College London
- Ear Institute
- Brain Sciences
- London WC1X 8EE
- UK
| | - Peter G. Taylor
- The Open University
- Faculty of Science, Technology, Engineering & Mathematics
- Milton Keynes
- UK
| | | | - James Bowen
- The Open University
- Faculty of Science, Technology, Engineering & Mathematics
- Milton Keynes
- UK
| | - Alan R. Bassindale
- The Open University
- Faculty of Science, Technology, Engineering & Mathematics
- Milton Keynes
- UK
| | - Mateusz B. Pitak
- UK National Crystallography Service
- Chemistry
- University of Southampton
- Southampton
- UK
| | - Simon J. Coles
- UK National Crystallography Service
- Chemistry
- University of Southampton
- Southampton
- UK
| |
Collapse
|
16
|
Ata S, Banerjee SL, Singha NK. Polymer nano-hybrid material based on graphene oxide/POSS via surface initiated atom transfer radical polymerization (SI-ATRP): Its application in specialty hydrogel system. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|