1
|
Potočňák I, Bukrynov O, Kliuikov A, Holub M, Vitushkina S, Samoľová E, Čižmár E, Váhovská L. Influence of the phonon-bottleneck effect and low-energy vibrational modes on the slow spin-phonon relaxation in Kramers-ions-based Cu(II) and Co(II) complexes with 4-amino-3,5-bis-(pyridin-2-yl)-1,2,4-triazole and dicyanamide. Dalton Trans 2024; 53:6950-6964. [PMID: 38567872 DOI: 10.1039/d4dt00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Two new complexes, bis-[4-amino-3,5-bis-(pyridin-2-yl)-1,2,4-triazole-κ2N2,N6]bis-(dicyanamide-κN8)copper(II), [Cu(abpt)2(dca)2] (1) and bis-[4-amino-3,5-bis-(pyridin-2-yl)-1,2,4-triazole-κ2N2,N6]bis-(dicyanamide-κN8)cobalt(II), [Co(abpt)2(dca)2] (2), have been prepared and magneto-structurally characterised. Single crystal studies of both complexes have shown that their crystal structures are molecular, in which the central atoms are six-coordinated in the form of a distorted octahedron by two bidentate abpt and two monodentate dca ligands. Even if both complexes have the same composition and crystallize in the same P1̄ space group, they are not isostructural. Both structures contain strong intermolecular N-H⋯N hydrogen bonds and π-π stacking interactions. IR spectra are consistent with the solved structures of both complexes and confirmed the terminal character of the dca ligands and the bidentate coordination of the abpt ligands. The analysis of the magnetic properties showed that both complexes exhibit field-induced slow spin-phonon relaxation. In both complexes, the slow spin-phonon relaxation is influenced by a severe phonon-bottleneck effect that affects the direct process, a dominant relaxation mechanism at low temperatures in both complexes. The phonon-bottleneck effect in 1 was suppressed by simply reducing the crystallite size, and further analysis of the field dependence of the relaxation time yielded the characteristic energy of vibrational modes of 11 cm-1 participating in the Raman process at low magnetic fields. The analysis of magnetic properties and ab initio calculations confirmed that 2 represents a system with a moderate uniaxial anisotropy yielding an average energy barrier of 82 cm-1 (from all four nonequivalent Co(II) sites in the structure of 2).
Collapse
Affiliation(s)
- Ivan Potočňák
- P. J. Šafárik University in Košice, Faculty of Science, Institute of Chemistry, Department of Inorganic Chemistry, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Oleksandr Bukrynov
- V. N. Karazin Kharkiv National University, Faculty of Chemistry, Department of Applied Chemistry, Svobody sq. 4, UA-61022 Kharkiv, Ukraine
| | - Andrii Kliuikov
- P. J. Šafárik University in Košice, Faculty of Science, Institute of Physics, Park Angelinum 9, SK-041 54 Košice, Slovakia
- Slovak Metrological Institute, Karloveská 63, SK-842 55 Bratislava, Slovakia
| | - Mariia Holub
- P. J. Šafárik University in Košice, Faculty of Science, Institute of Physics, Park Angelinum 9, SK-041 54 Košice, Slovakia
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, FR-91190 Saint-Aubin, France
| | - Svitlana Vitushkina
- V. N. Karazin Kharkiv National University, Faculty of Chemistry, Department of Applied Chemistry, Svobody sq. 4, UA-61022 Kharkiv, Ukraine
- Institute of Experimental Physics of the Slovak Academy of Sciences, Department of Materials Physics, Watsonova 47, SK-040 01 Košice, Slovakia
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
| | - Erik Čižmár
- P. J. Šafárik University in Košice, Faculty of Science, Institute of Physics, Park Angelinum 9, SK-041 54 Košice, Slovakia
| | - Lucia Váhovská
- University of Veterinary Medicine and Pharmacy in Košice, Department of Chemistry, Biochemistry and Biophysics, Komenského 73, SK-041 84 Košice, Slovakia.
| |
Collapse
|
2
|
Hsiao KC, Yang PC, Fang CT, Liu HK, Lin CY. A Linear Two-Coordinate Cr(II) Complex: Synthesis, Characterization, and Reactivity. Chem Asian J 2024; 19:e202300924. [PMID: 38059903 DOI: 10.1002/asia.202300924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
The synthesis and characterization of a linear two-coordinate Cr(II) amido complex, Cr{N(t Bu)Dipp}2 (Dipp=2,6-diisopropylphenyl), from the reaction of 1 molar equivalent (equiv) of CrCl2 and 2 equiv. of LiN(t Bu)Dipp is reported. Single-crystal X-ray diffractometry (SC-XRD) analysis revealed that it has a short Cr-N bond distance of 1.8878(9) Å, which could be attributed to the relatively less bulky nature of the amido ligand compared with reported systems. Furthermore, the oxidation reaction of the two-coordinate Cr(II) complex was explored. The oxidation reaction of Cr{N(t Bu)Dipp}2 with the one-electron oxidants AgOTf and [FeCp2 ][BArF 4 ] (BArF 4 - =[B{C6 H3 -3,5-(CF3 )2 }4 ]- ) afforded the trigonal planar three- and bent two-coordinate Cr(III) complexes Cr{N(t Bu)Dipp}2 (OTf) and [Cr{N(t Bu)Dipp}2 ][BArF 4 ], respectively. The reaction of Cr{N(t Bu)Dipp}2 with 1 equiv. of the organic azides AdN3 (Ad=1-adamantyl) and PhN3 afforded the three-coordinate Cr(IV) imido complexes Cr{N(t Bu)Dipp}2 (NAd) and Cr{N(t Bu)Dipp}2 (NPh), respectively. The reaction of Cr{N(t Bu)Dipp}2 and two equiv. of Me3 NO afforded the Cr(VI) dioxo complex Cr{N(t Bu)Dipp}2 (O)2 . The reaction of Cr{N(t Bu)Dipp}2 with 1 equiv. of CyN=C=NCy resulted in the insertion of the carbodiimide into the Cr-N bond, with the formation of a three-coordinate Cr(II) complex. Finally, density functional theory (DFT) calculations were used to elucidate the electronic structure of these complexes.
Collapse
Affiliation(s)
- Kai-Chin Hsiao
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| | - Po-Chun Yang
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| | - Chia-Te Fang
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| | - Chun-Yi Lin
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| |
Collapse
|
3
|
Wang LX, Wu XF, Jin XX, Li JY, Wang BW, Liu JY, Xiang J, Gao S. Slow magnetic relaxation in 8-coordinate Mn(II) compounds. Dalton Trans 2023; 52:14797-14806. [PMID: 37812439 DOI: 10.1039/d3dt02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The design and synthesis of high-spin Mn(II)-based single-molecule magnets (SMMs) have not been well developed to a great extent, as compared with a large number of SMMs based on the other first row transition metal complexes. In light of our success in designing Fe(II), Co(II) and Fe(III)-based SMMs with a high coordination number of 8, it is of great interest to design Mn(II) analogues with such a strategy. In this contribution, four Mn(II) compounds, [MnII(Ln)2](ClO4)2 (1-4) were obtained from reactions of neutral tetradentate ligands, L1-L4, with hydrated MnII(ClO4)2 (L1 = 2,9-bis(carbomethoxy)-1,10-phenanthroline, L2 = 2,9-bis(carbomethoxy)-2,2'-dipyridine, L3 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide, L4 = 6,6'-bis(2-(tert-butyl)-2H-tetrazol-5-yl)-2,2'-bipyridine). Their crystal structures have been determined by X-ray crystallography and it clearly shows that the Mn(II) centers in these compounds have an oversaturated coordination number of 8. Their magnetic properties have been investigated in detail; to our surprise, all of these Mn(II) compounds show interesting slow magnetic relaxation behaviors under an applied direct current field, although they have very small negative D values.
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Jia-Yi Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
- School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Horrer G, Luff MS, Radius U. N-Heterocyclic carbene and cyclic (alkyl)(amino)carbene ligated half-sandwich complexes of chromium(II) and chromium(I). Dalton Trans 2023; 52:13244-13257. [PMID: 37667868 DOI: 10.1039/d3dt02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The synthesis and characterization of a series of Cr(II) N-Heterocyclic Carbene (NHC) complexes of the type [{Cr(NHC)Cl(μ-Cl)}2] and [(Cyp)Cr(NHC)X] (Cyp = η5-C5H5, cyclopentadienyl; η5-C5Me5, pentamethylcyclopentadienyl; X = Cl, η3-C3H5; NHC = IMeMe, IiPrMe, IMes, IDipp) as well as the cyclic (alkyl)(amino)carbene cAACMe ligated complexes [(η5-C5H5)Cr(cAACMe)X] (X = Cl, NPh2), [(η5-C9H7)Cr(cAACMe)Cl] (C9H7 = Ind, indenyl) and [(η5-C13H9)Cr(cAACMe)Cl] (C13H9 = Fl, fluorenyl) are reported. The reduction of [(η5-C5Me5)Cr(IMeMe)Cl] with KC8 in the presence of CO afforded the NHC ligated Cr(I) metallo-radical [(η5-C5Me5)Cr(IMeMe)(CO)2]. Quantum chemical calculations performed on [(η5-C5Me5)Cr(IMeMe)(CO)2] confirm for this complex a predominantly chromium centered radical.
Collapse
Affiliation(s)
- Günther Horrer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Martin S Luff
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
5
|
Gonzalez A, Chen TY, Demeshko S, Meyer F, Werncke CG. Synthesis, Properties, and Reactivity of a Linear NHC-Based Chromium(I) Silylamide. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Mičová R, Rajnák C, Titiš J, Samoľová E, Zalibera M, Bieńko A, Boča R. Slow magnetic relaxation in two mononuclear Mn(II) complexes not governed by the over-barrier Orbach process. Chem Commun (Camb) 2023; 59:2612-2615. [PMID: 36757181 DOI: 10.1039/d2cc06510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two hexacoordinate Mn(II) complexes containing a chelating residue of hexafluoroacetylacetone and (Cl-substituted) 4-benzylpyridine show DC magnetic functions typical for S = 5/2 spin systems: g ∼ 2, D - small. The AC susceptibility confirms a field supported slow magnetic relaxation in which the over-barrier Orbach relaxation process does not play a role. Both systems possess two or three slow relaxation channels.
Collapse
Affiliation(s)
- Romana Mičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Erika Samoľová
- X-Ray Crystallography Facility, UC San Diego, 5128 Urey Hall MC 0358, 9500 Gilman Drive, La Jolla CA, USA.,Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Michal Zalibera
- Department of Physical Chemistry, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| |
Collapse
|
7
|
Noor A. Recent developments in two coordinate transition metal chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Li RX, Sun HY, Liang HC, Yi C, Yao NT, Meng YS, Xiong J, Liu T, Zhu YY. Slow magnetic relaxation in mononuclear octa-coordinate Fe(II) and Co(II) complexes from a Bpybox ligand. Dalton Trans 2022; 51:8865-8873. [PMID: 35635033 DOI: 10.1039/d2dt00865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 3d transition metal mononuclear complexes, [(FeL2)(ClO4)2]2·CH3CN (1) and (CoL2)(ClO4)2·2CH3CN (2), have been prepared from a rigid tetradentate bpybox (L = 6,6'-bis(2,5-dihydrooxazol-4-yl)-2,2'-bipyridine) ligand. Single crystal X-ray diffraction analyses together with the help of calculations show that both compounds are octa-coordinate. Direct current magnetic studies reveal their significant magnetic anisotropy. Impressively, field-induced relaxation of magnetism is observed in the two complexes and the apparent anisotropy barriers are 14.1 K for 1 and 21.6 K for 2, respectively. Theoretical calculations reveal that two Fe(II) centers in 1 have small negative D values of -4.897 and -4.825 cm-1 and relatively small E values of 0.646 and 0.830 cm-1, indicating a uniaxial magnetic anisotropy. In contrast, the D and E values in the Co(II) center of 2 are 46.42 cm-1 and 11.51 cm-1, featuring a rhombic anisotropy. This work demonstrates that field-induced slow magnetic relaxation in 3d transition metal complexes with high coordination numbers can be manipulated through rigid ligand design.
Collapse
Affiliation(s)
- Rui-Xia Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hai-Chao Liang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Cheng Yi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yuan-Yuan Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| |
Collapse
|
9
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
10
|
Cyclic (alkyl)(amino)carbene (CAAC) ligands: Electronic structure and application as chemically- and redox-non-innocent ligands and chromophores. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
|
12
|
Weller R, Müller I, Duhayon C, Sabo-Etienne S, Bontemps S, Werncke CG. Quasilinear 3d-metal(i) complexes [KM(N(Dipp)SiR 3) 2] (M = Cr-Co) - structural diversity, solution state behaviour and reactivity. Dalton Trans 2021; 50:4890-4903. [PMID: 33877186 DOI: 10.1039/d1dt00121c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis and characterization of neutral quasilinear 3d-metal(i) complexes of chromium to cobalt of the type [KM(N(Dipp)SiMe3)2] (Dipp = 2,6-di-iso-propylphenyl) are reported. In solid state these metal(i) complexes either occur as isolated molecules (Co) or are part of a potassium ion linked 1D-coordination polymer (Cr-Fe). In solution the potassium cation is either ligated within the ligand sphere of the metal silylamide or is separated from the complex depending on the solvent. For iron, we showcase that it is possible to use sodium or lithium metal for the reduction of the metal(ii) precursor. However, in these cases the resulting iron(i) complexes can only be isolated upon cation separation using an appropriate crown-ether. Further, the neutral metal(i) complexes are used to introduce NBu4+ as an organic cation in the case of cobalt and iron. The impact of the intramolecular cation complexation was further demonstrated upon reaction with diphenyl acetylene which leads to bond formation processes and redox disproportionation instead of η2-alkyne complex formation.
Collapse
Affiliation(s)
- Ruth Weller
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Romain C, Bellemin-Laponnaz S, Dagorne S. Recent progress on NHC-stabilized early transition metal (group 3–7) complexes: Synthesis and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213411] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Rajnák C, Titiš J, Moncol’ J, Valigura D, Boča R. Effect of the Distant Substituent to Slow Magnetic Relaxation of Pentacoordinate Fe(III) Complexes. Inorg Chem 2020; 59:14871-14878. [DOI: 10.1021/acs.inorgchem.0c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Ján Moncol’
- Institute of Inorganic Chemistry, FCHPT, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Dušan Valigura
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| |
Collapse
|
15
|
Mantanona AJ, Tolentino DR, Cay KS, Gembicky M, Jazzar R, Bertrand G, Rinehart JD. Tuning electronic structure through halide modulation of mesoionic carbene cobalt complexes. Dalton Trans 2020; 49:2426-2430. [PMID: 32048665 DOI: 10.1039/c9dt04624k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first examples of Co(ii) mesoionic carbene complexes (CoX2DippMIC2; X = Cl-, Br-, I-) demonstrate a new electronic perturbation on tetrahedral Co(ii) complexes. Using absorption spectroscopy and magnetometry, the consequences of the MIC's strong σ-donating/minimal π-accepting nature are analyzed and shown to be further tunable by the nature of the coordinated halide.
Collapse
Affiliation(s)
- Alex J Mantanona
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Daniel R Tolentino
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Kristine S Cay
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Rodolphe Jazzar
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Guy Bertrand
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| | - Jeffrey D Rinehart
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Cui H, Lv W, Tong W, Chen X, Xue Z. Slow Magnetic Relaxation in a Mononuclear Five‐Coordinate Cu(II) Complex. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hui‐Hui Cui
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Wei Tong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions High Magnetic Field Laboratory of the Chinese Academy of Science Hefei 230031 Anhui China
| | - Xue‐Tai Chen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Zi‐Ling Xue
- Department of Chemistry University of Tennessee 37996 Knoxville Tennessee USA
| |
Collapse
|
17
|
Reduction of 2,2′-Bipyridine by Quasi-Linear 3d-Metal(I) Silylamides—A Structural and Spectroscopic Study. INORGANICS 2019. [DOI: 10.3390/inorganics7100117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quasi-linear anionic 3d-metal(I) silylamides are a new and promising class of molecules. Due to their highly negative reduction potential we wanted to test their capability to reduce substrates under coordination of their monoanionic radicaloid form. In a proof of principle study, we present the results of the reaction of metal(I) silylamides of chromium to cobalt with 2,2′-bipyridine (bipy), the redox non-innocence and reducibility of which was already established. In the course of these studies complexes of the type K{18-crown-6}[M(hmds)2(bipy)] (hmds = –N(SiMe3)2) were obtained. These compounds were isolated and thoroughly characterized to confirm the electron transfer onto the bipyridine ligand, which now acts as a radical monoanion. For comparison of the structural changes of the bipyridine ligand, the analogous zinc complexes were also synthesized. Overall our results indicate that anionic metal(I) silylamides are capable of reducing and ligate substrates, even when the electrochemical reduction potential of the latter is by up to 1 V higher.
Collapse
|
18
|
Guo FS, Bar AK, Layfield RA. Main Group Chemistry at the Interface with Molecular Magnetism. Chem Rev 2019; 119:8479-8505. [PMID: 31059235 DOI: 10.1021/acs.chemrev.9b00103] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Innovative synthetic coordination and, increasingly, organometallic chemistry are at the heart of advances in molecular magnetism. Smart ligand design is essential for implementing controlled modifications to the electronic structure and magnetic properties of transition metal and f-element compounds, and many important recent developments use nontraditional ligands based on low-coordinate main group elements to drive the field forward. This review charts progress in molecular magnetism from the perspective of ligands in which the donor atoms range from low-coordinate 2p elements-particularly carbon but also boron and nitrogen-to the heavier p-block elements such as phosphorus, arsenic, antimony, and even bismuth. Emphasis is placed on the role played by novel main group ligands in addressing magnetic anisotropy of transition metal and f-element compounds, which underpins the development of single-molecule magnets (SMMs), a family of magnetic materials that can retain magnetization in the absence of a magnetic field below a blocking temperature. Nontraditional p-block donor atoms, with their relatively diffuse valence orbitals and more diverse bonding characteristics, also introduce scope for tuning the spin-orbit coupling properties and metal-ligand covalency in molecular magnets, which has implications in areas such as magnetic exchange coupling and spin crossover phenomena. The chemistry encompasses transition metals, lanthanides, and actinides and describes recently discovered molecular magnets that can be regarded, currently, as defining the state of the art. This review identifies that main group chemistry at the interface molecular magnetism is an area with huge potential to deliver new types of molecular magnets with previously unseen properties and applications.
Collapse
Affiliation(s)
- Fu-Sheng Guo
- Department of Chemistry, School of Life Sciences , University of Sussex , Brighton BN1 9QJ , United Kingdom
| | - Arun Kumar Bar
- Department of Chemistry, School of Life Sciences , University of Sussex , Brighton BN1 9QJ , United Kingdom
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences , University of Sussex , Brighton BN1 9QJ , United Kingdom
| |
Collapse
|
19
|
Hoffbauer MR, Comanescu CC, Iluc VM. Reactivity of a Pd(II) carbene towards 2,6-dimesitylphenyldiazomethane and 2,6-dimesitylphenylazide. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Rajnák C, Titiš J, Moncoľ J, Renz F, Boča R. Slow magnetic relaxation in a high-spin pentacoordinate Fe(iii) complex. Chem Commun (Camb) 2019; 55:13868-13871. [DOI: 10.1039/c9cc06610a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mononuclear pentacoordinate iron(iii) complex shows slow magnetic relaxation with three relaxation channels.
Collapse
Affiliation(s)
- Cyril Rajnák
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- SK-917 01 Trnava
- Slovakia
| | - Ján Titiš
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- SK-917 01 Trnava
- Slovakia
| | - Ján Moncoľ
- Institute of Inorganic Chemistry
- Slovak University of Technology
- SK-812 37 Bratislava
- Slovakia
| | - Franz Renz
- Institute of Inorganic Chemistry
- Leibniz University
- D-30167 Hannover
- Germany
| | - Roman Boča
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- SK-917 01 Trnava
- Slovakia
| |
Collapse
|
21
|
Uchida K, Cosquer G, Sugisaki K, Matsuoka H, Sato K, Breedlove BK, Yamashita M. Isostructural M(ii) complexes (M = Mn, Fe, Co) with field-induced slow magnetic relaxation for Mn and Co complexes. Dalton Trans 2019; 48:12023-12030. [PMID: 31298228 DOI: 10.1039/c8dt02150c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We herein report the synthetic, structural, theoretical, and magnetic studies on three isostructural complexes, [M(L)2(CH3OH)2] (M = Mn (Mn), Fe (Fe), and Co (Co); HL = 2,6-bis(pyrazole-1-yl)pyridine-4-carboxylic acid). From single crystal X-ray crystallography, it is found that the complexes crystallized in the same space group (C2/c) and had seven-coordinate pentagonal bipyramidal structures. From direct current (dc) and alternating current (ac) magnetic susceptibility measurements, Mn and Co were found to undergo field-induced slow magnetic relaxation with two relaxation pathways. To elucidate the origin of the slow magnetic relaxation phenomena of Mn, electron paramagnetic resonance (EPR) measurements and theoretical calculations were performed. The EPR measurements were performed on polycrystalline powder samples, and the following parameters were obtained by simulating the EPR data: giso = 2.00 and small zero field splitting parameter D = -0.13 cm-1. To the best of our knowledge, this is the first example of a seven-coordinate mononuclear Mn(ii) complex undergoing slow magnetic relaxation.
Collapse
Affiliation(s)
- Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen L, Song J, Zhao W, Yi G, Zhou Z, Yuan A, Song Y, Wang Z, Ouyang ZW. A mononuclear five-coordinate Co(ii) single molecule magnet with a spin crossover between the S = 1/2 and 3/2 states. Dalton Trans 2018; 47:16596-16602. [PMID: 30417917 DOI: 10.1039/c8dt03783c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although a great number of single-ion magnets (SIMs) and spin-crossover (SCO) compounds have been discovered, multifunctional materials with the combination of SCO and SIM properties are extremely scarce. Here magnetic studies have been carried out for a mononuclear, five-coordinate cobalt(ii) complex [Co(3,4-lut)4Br]Br (1) with square pyramidal geometry. Direct-current magnetic measurement confirms the spin transition between the S = 1/2 and 3/2 states in the range of 150-290 K with a small hysteresis loop. Frequency- and temperature-dependent alternating-current magnetic susceptibility reveals slow magnetization relaxation under an applied dc field of 3000 Oe. The work here presents the first instance of the five-coordinate mononuclear cobalt(ii)-based SIM exhibiting the thermally induced complete SCO.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu Q, Chen Q, Leng X, Deng QH, Deng L. Hafnium(II) Complexes with Cyclic (Alkyl)(amino)carbene Ligation. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qing Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qi Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
24
|
Wang J, Cui HH, Zhang YQ, Chen L, Chen XT. Magnetic anisotropy and slow magnetic relaxation of seven-coordinate cobalt(II)–nitrate complexes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.07.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Paul USD, Radius U. What Wanzlick Did Not Dare To Dream: Cyclic (Alkyl)(amino)carbenes (cAACs) as New Key Players in Transition-Metal Chemistry. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700397] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ursula S. D. Paul
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
26
|
Li GL, Wu SQ, Zhang LF, Wang Z, Ouyang ZW, Ni ZH, Su SQ, Yao ZS, Li JQ, Sato O. Field-Induced Slow Magnetic Relaxation in an Octacoordinated Fe(II) Complex with Pseudo-D2d Symmetry: Magnetic, HF-EPR, and Theoretical Investigations. Inorg Chem 2017; 56:8018-8025. [DOI: 10.1021/acs.inorgchem.7b00765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guo-Ling Li
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
| | - Li-Fang Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China
| | - Zhenxing Wang
- Wuhan National High Magnetic
Field Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic
Field Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Zhong-Hai Ni
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
| | - Zi-Shuo Yao
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
| | - Jun-Qiu Li
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
| |
Collapse
|
27
|
Danopoulos AA, Braunstein P, Monakhov KY, van Leusen J, Kögerler P, Clémancey M, Latour JM, Benayad A, Tromp M, Rezabal E, Frison G. Heteroleptic, two-coordinate [M(NHC){N(SiMe 3) 2}] (M = Co, Fe) complexes: synthesis, reactivity and magnetism rationalized by an unexpected metal oxidation state. Dalton Trans 2017; 46:1163-1171. [PMID: 28054058 DOI: 10.1039/c6dt03565e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The linear, two-coordinate and isostructural heteroleptic [M(IPr){N(SiMe3)2}] (IPr = 1,3-bis(diisopropylphenyl)-imidazol-2-ylidene), formally MI complexes (M = Co, 3; Fe, 4) were obtained by the reduction of [M(IPr)Cl{N(SiMe3)2}] with KC8, or [Co(IPr){N(SiMe3)2}2] with mes*PH2, mes* = 2,4,6-tBu3C6H2. The magnetism of 3 and 4 implies CoII and FeII centres coupled to one ligand-delocalized electron, in line with XPS and XANES data; the ac susceptibility of 4 detected a pronounced frequency dependence due to slow magnetization relaxation. Reduction of [Fe(IPr)Cl{N(SiMe3)2}] with excess KC8 in toluene gave the heteronuclear 'inverse-sandwich' Fe-K complex 7, featuring η6-toluene sandwiched between one Fe0 and one K+ centre.
Collapse
Affiliation(s)
- Andreas A Danopoulos
- Institute for Advanced Study (USIAS), Université de Strasbourg, 67081 Strasbourg Cedex, France. and Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire de Chimie de Coordination, Institut de Chimie, 4 rue Blaise Pascal, 67081 Strasbourg Cedex, France.
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire de Chimie de Coordination, Institut de Chimie, 4 rue Blaise Pascal, 67081 Strasbourg Cedex, France.
| | - Kirill Yu Monakhov
- Institut für Anorganische Chemie, RWTH Aachen University, 52074 Aachen, Germany.
| | - Jan van Leusen
- Institut für Anorganische Chemie, RWTH Aachen University, 52074 Aachen, Germany.
| | - Paul Kögerler
- Institut für Anorganische Chemie, RWTH Aachen University, 52074 Aachen, Germany. and Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute 6, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Clémancey
- Laboratoire de Chimie et Biologie des Métaux, Equipe de Physicochimie des Métaux en Biologie, UMR 5249 CNRS/CEA-DRF-BIG/Université Grenoble-Alpes, 17 rue des Martyrs, Grenoble 38054, France
| | - Jean-Marc Latour
- Laboratoire de Chimie et Biologie des Métaux, Equipe de Physicochimie des Métaux en Biologie, UMR 5249 CNRS/CEA-DRF-BIG/Université Grenoble-Alpes, 17 rue des Martyrs, Grenoble 38054, France
| | - Anass Benayad
- CEA/DRT/LITEN/DTNM/SEN/L2N, 38054 Grenoble Cedex 9, France
| | - Moniek Tromp
- Van't Hoff Institute for Molecular Sciences, Sustainable Materials Characterisation, University of Amsterdam, Amsterdam, The Netherlands
| | - Elixabete Rezabal
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - Gilles Frison
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| |
Collapse
|
28
|
Damjanović M, Samuel PP, Roesky HW, Enders M. NMR analysis of an Fe(i)–carbene complex with strong magnetic anisotropy. Dalton Trans 2017; 46:5159-5169. [PMID: 28352888 DOI: 10.1039/c7dt00408g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A paramagnetic, easy-plane anisotropic FeI complex, bearing cyclic-alkyl(amino) carbene (cAAC) ligands, is studied by means of NMR and DFT.
Collapse
Affiliation(s)
- Marko Damjanović
- Institute of Inorganic Chemistry
- Heidelberg University
- D-69120 Heidelberg
- Germany
| | - Prinson P. Samuel
- Universität Göttingen
- Institut für Anorganische Chemie
- Göttingen
- Germany
| | - Herbert W. Roesky
- Universität Göttingen
- Institut für Anorganische Chemie
- Göttingen
- Germany
| | - Markus Enders
- Institute of Inorganic Chemistry
- Heidelberg University
- D-69120 Heidelberg
- Germany
| |
Collapse
|
29
|
Lin CY, Power PP. Complexes of Ni(i): a “rare” oxidation state of growing importance. Chem Soc Rev 2017; 46:5347-5399. [DOI: 10.1039/c7cs00216e] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis and diverse structures, reactivity (small molecule activation and catalysis) and magnetic properties of Ni(i) complexes are summarized.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Department of Chemistry
- University of California
- Davis
- USA
| | | |
Collapse
|
30
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Turner ZR. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C−H and C−F Bond Activation. Chemistry 2016; 22:11461-8. [DOI: 10.1002/chem.201602264] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Zoë R. Turner
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| |
Collapse
|
32
|
Roy S, Mondal KC, Roesky HW. Cyclic Alkyl(amino) Carbene Stabilized Complexes with Low Coordinate Metals of Enduring Nature. Acc Chem Res 2016; 49:357-69. [PMID: 26925983 DOI: 10.1021/acs.accounts.5b00381] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N-Heterocyclic carbenes (NHCs) are known to stabilize some metal atoms in different oxidation states mostly by their strong σ-donation. After the successful syntheses of cyclic alkyl(amino) carbenes (cAACs), they have been proven to be much more effective in stabilizing electron rich species. In cAAC, one of the σ-withdrawing and π-donating nitrogen atoms of NHC is replaced by a σ-donating quaternary carbon atom leading to a lower lying LUMO. This makes the acceptance of π-back-donation from the element bound to the carbene carbon atom of cAAC energetically more advantageous. Further evidence suggests that the carbene carbon of cAAC can use the lone pair of electrons present on the adjacent nitrogen in a more controlled way depending on the accumulation of electron density on the bound metal. It has been found that cAAC can be utilized as excellent ligand for the stabilization of a complex with three coordinate metal center [(cAAC)2M(I)-Cl; M = Fe, Co, Cr]. Complex (cAAC)2M(II)Cl2 [M = Fe, Co, Cr] was prepared by reacting anhydrous M(II)Cl2 with two equiv of cAAC followed by treatment with one equiv of KC8 (reducing agent) to obtain (cAAC)2M(I)-Cl. The corresponding cation (cAAC)2M(+) was isolated when (cAAC)2M(I)-Cl was reacted with sodium-tetraarylborate (lithium) in toluene or fluorobenzene. The CV of cation (cAAC)2M(+) [M = Co, Fe] suggests that it can reversibly undergo one electron reduction. The cations of Co and Fe were reduced with Na(Hg) or KC8, respectively. (cAAC)2Co(I)Cl can be directly reduced to (cAAC)2Co(0) when reacted with one equiv of KC8. Analogous (cAAC·)2Zn(II) and (cAAC)2Mn complexes are prepared by reduction of (cAAC)MCl2 [M = Zn, Mn] with two equiv of KC8 in the presence of one equiv of cAAC. The square planar (cAAC)2NiCl2 complex was directly reduced by two equiv of LiN(iPr2) (KC8) to (cAAC)2Ni(0). The (cAAC)2Pd(0) and (cAAC)2Pt(0) complexes are prepared by substituting all four triphenylphosphines of (Ph3P)4M(0) [M = Pd, Pt] by two cAACs. Cation (cAAC)2M(+) [M = Cu, Au] was reduced with sodium/potassium to obtain the neutral analogue [(cAAC)2Cu, (cAAC)2Au]. Two coordinate Zn/Mn/Cu/Au are stabilized by two neutral carbene ligands possessing radical electrons on the carbene carbon atoms, while analogous complexes of Co/Fe/Ni/Pd/Pt contain metals in the zero oxidation state. The ground electronic structure of (cAAC)2M was thoroughly studied by theoretical calculations. In this Account, we summarize our developments in stabilizing metal complexes with low coordinate metal atoms in two, one, and most significantly in their zero oxidation states by utilizing cAACs as ligands.
Collapse
Affiliation(s)
- Sudipta Roy
- Institut für Anorganische
Chemie, Georg-August-Universität, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Kartik Chandra Mondal
- Institut für Anorganische
Chemie, Georg-August-Universität, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Herbert W. Roesky
- Institut für Anorganische
Chemie, Georg-August-Universität, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Christian JH, Brogden DW, Bindra JK, Kinyon JS, van Tol J, Wang J, Berry JF, Dalal NS. Enhancing the Magnetic Anisotropy of Linear Cr(II) Chain Compounds Using Heavy Metal Substitutions. Inorg Chem 2016; 55:6376-83. [PMID: 26881994 DOI: 10.1021/acs.inorgchem.5b02545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnetic properties of the series of three linear, trimetallic chain compounds Cr2Cr(dpa)4Cl2, 1, Mo2Cr(dpa)4Cl2, 2, and W2Cr(dpa)4Cl2, 3 (dpa = 2,2'-dipyridylamido), have been studied using variable-temperature dc and ac magnetometry and high-frequency EPR spectroscopy. All three compounds possess an S = 2 electronic ground state arising from the terminal Cr(2+) ion, which exhibits slow magnetic relaxation under an applied magnetic field, as evidenced by ac magnetic susceptibility and magnetization measurements. The slow relaxation stems from the existence of an easy-axis magnetic anisotropy, which is bolstered by the axial symmetry of the compounds and has been quantified through rigorous high-frequency EPR measurements. The magnitude of D in these compounds increases when heavier ions are substituted into the trimetallic chain; thus D = -1.640, -2.187, and -3.617 cm(-1) for Cr2Cr(dpa)4Cl2, Mo2Cr(dpa)4Cl2, and W2Cr(dpa)4Cl2, respectively. Additionally, the D value measured for W2Cr(dpa)4Cl2 is the largest yet reported for a high-spin Cr(2+) system. While earlier studies have demonstrated that ligands containing heavy atoms can enhance magnetic anisotropy, this is the first report of this phenomenon using heavy metal atoms as "ligands".
Collapse
Affiliation(s)
- Jonathan H Christian
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - David W Brogden
- Department of Chemistry, University of Wisconsin - Madison , 1101 University Avenue Madison, Wisconsin 53706, United States
| | - Jasleen K Bindra
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - Jared S Kinyon
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University , 1800 East Paul Dirac Drive, Tallahassee, Florida 32306, United States
| | - Jingfang Wang
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin - Madison , 1101 University Avenue Madison, Wisconsin 53706, United States
| | - Naresh S Dalal
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
34
|
Zhu G, Liu J, Sun Q, Jena P. Assembling a bi-coordinated Cr complex for ferromagnetic nanorings: insight from first-principles calculations. Phys Chem Chem Phys 2016; 18:17868-74. [DOI: 10.1039/c6cp01908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the recent synthesis of bi-coordinated transition metal–organic complexes [Samuel, et al., Chem. Sci., 2015, 6, 3148], we have studied the structure and magnetic properties of a series of bi-coordinated transition metal based nanorings by folding quasi-1D chains.
Collapse
Affiliation(s)
- Guizhi Zhu
- Department of Materials Science and Engineering
- Peking University
- Beijing 100871
- China
| | - Junyi Liu
- Department of Materials Science and Engineering
- Peking University
- Beijing 100871
- China
| | - Qiang Sun
- Department of Materials Science and Engineering
- Peking University
- Beijing 100871
- China
- Center for Applied Physics and Technology
| | - Puru Jena
- Department of Physics
- Virginia Commonwealth University
- Richmond
- USA
| |
Collapse
|
35
|
Werncke CG, Suturina E, Bunting PC, Vendier L, Long JR, Atanasov M, Neese F, Sabo-Etienne S, Bontemps S. Homoleptic Two-Coordinate Silylamido Complexes of Chromium(I), Manganese(I), and Cobalt(I). Chemistry 2015; 22:1668-74. [DOI: 10.1002/chem.201503980] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/11/2022]
Affiliation(s)
- C. Gunnar Werncke
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205 route de Narbonne, 31077 Toulouse (France) and Université de Toulouse, UPS, INPT 31077 Toulouse France
| | - Elizaveta Suturina
- Max-Planck-Institute for Chemical Energy Conversion; Stiftstrasse 34-36 Mühlheim an der Ruhr 45470 Germany
| | - Philip C. Bunting
- Department of Chemistry; University of California, Berkeley; Berkeley California 94720 USA
| | - Laure Vendier
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205 route de Narbonne, 31077 Toulouse (France) and Université de Toulouse, UPS, INPT 31077 Toulouse France
| | - Jeffrey R. Long
- Department of Chemistry; University of California, Berkeley; Berkeley California 94720 USA
| | - Mihail Atanasov
- Max-Planck-Institute for Chemical Energy Conversion; Stiftstrasse 34-36 Mühlheim an der Ruhr 45470 Germany
- Institute of General and Inorganic Chemistry; Bulgarian Academy of Sciences; 1113 Sofia Bulgaria
| | - Frank Neese
- Max-Planck-Institute for Chemical Energy Conversion; Stiftstrasse 34-36 Mühlheim an der Ruhr 45470 Germany
| | - Sylviane Sabo-Etienne
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205 route de Narbonne, 31077 Toulouse (France) and Université de Toulouse, UPS, INPT 31077 Toulouse France
| | - Sébastien Bontemps
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205 route de Narbonne, 31077 Toulouse (France) and Université de Toulouse, UPS, INPT 31077 Toulouse France
| |
Collapse
|