1
|
Baruah DJ, Thakur A, Roy E, Roy K, Basak S, Neog D, Bora HK, Konwar R, Chaturvedi V, Shelke MV, Das MR. Atomically Dispersed Manganese on Graphene Nanosheets as Biocompatible Nanozyme for Glutathione Detection in Liver Tissue Lysate Using Microfluidic Paper-based Analytical Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47902-47920. [PMID: 37812745 DOI: 10.1021/acsami.3c08762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Recently, single atom catalysts (SACs) featuring M-Nx (M = metal) active sites on carbon support have drawn considerable attention due to their promising enzyme-like catalytic properties. However, typical synthesis methods of SACs often involve energy-intensive carbonization processes. Herein, we report a facile one-pot, low-temperature, wet impregnation method to fully utilize M-N4 sites of manganese phthalocyanine (MnPc) by decorating molecular MnPc over the sheets of graphene nanoplatelets (GNP). The synthesized MnPc@GNP exhibits remarkable peroxidase-mimic catalytic activity toward the oxidation of chromogenic 3,3',5,5'-tetramethylbenzidine (TMB) substrate owing to the efficient utilization of atomically dispersed Mn and the high surface-to-volume ratio of the porous catalyst. A nanozyme-based colorimetric sensing probe is developed to detect important biomarker glutathione (GSH) within only 5 min in solution phase based on the ability of GSH to effectively inhibit the TMB oxidation. The high sensitivity and selectivity of the developed colorimetric assay enable us to quantitatively determine GSH concentration in different biological fluids. This work, for the first time, reports a rapid MnPc@GNP nanozyme-based colorimetric assay in the solid substrate by fabricating microfluidic paper-based analytical devices (μPADs). GSH is successfully detected on the fabricated μPADs coated with only 6.0 μg of nanozyme containing 1.6 nmol of Mn in the linear range of 0.5-10 μM with a limit of detection of 1.23 μM. This work also demonstrates the quantitative detection of GSH in mice liver tissue lysate using μPADs, which paves the way to develop μPADs for point-of-care testing.
Collapse
Affiliation(s)
- Diksha J Baruah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Thakur
- Coal and Energy Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Esha Roy
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kallol Roy
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumanjita Basak
- Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Dipankar Neog
- Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himangsu K Bora
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Rituraj Konwar
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikash Chaturvedi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjusha V Shelke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash R Das
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Lee J, Lee Y, Lim JS, Kim SW, Jang H, Seo B, Joo SH, Sa YJ. Discriminating active sites for the electrochemical synthesis of H 2O 2 by molecular functionalisation of carbon nanotubes. NANOSCALE 2022; 15:195-203. [PMID: 36477469 DOI: 10.1039/d2nr04652k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemical production of H2O2via the two-electron oxygen reduction reaction (2e- ORR) has recently attracted attention as a promising alternative to the current anthraquinone process. Identification of active sites in O-doped carbon materials, which exhibit high activities and selectivities for the 2e- ORR, is important for understanding the selective electrocatalytic process and achieving the rational design of active electrocatalysts. However, this is impeded by the heterogeneous distribution of various active sites on these catalysts. In this study, we exploited the molecular functionalisation approach to implant anthraquinone, benzoic acid, and phenol groups on carbon nanotubes and systematically compared the electrocatalytic activities and selectivities of these functional groups. Among these oxygen functional groups, the anthraquinone group showed the highest surface-area-normalised and active-site-normalised activities.
Collapse
Affiliation(s)
- Juyeon Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Yesol Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - June Sung Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sun Woo Kim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Bora Seo
- Hydrogen and Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young Jin Sa
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
3
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
4
|
Chen Y, Yang Z, Hu H, Zhou X, You F, Yao C, Liu FJ, Yu P, Wu D, Yao J, Hu R, Jiang X, Yang H. Advanced Metal-Organic Frameworks-Based Catalysts in Electrochemical Sensors. Front Chem 2022; 10:881172. [PMID: 35433639 PMCID: PMC9010028 DOI: 10.3389/fchem.2022.881172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023] Open
Abstract
Developing efficient catalysts is vital for the application of electrochemical sensors. Metal-organic frameworks (MOFs), with high porosity, large specific surface area, good conductivity, and biocompatibility, have been widely used in catalysis, adsorption, separation, and energy storage applications. In this invited review, the recent advances of a novel MOF-based catalysts in electrochemical sensors are summarized. Based on the structure-activity-performance relationship of MOF-based catalysts, their mechanism as electrochemical sensor, including metal cations, synthetic ligands, and structure, are introduced. Then, the MOF-based composites are successively divided into metal-based, carbon-based, and other MOF-based composites. Furthermore, their application in environmental monitoring, food safety control, and clinical diagnosis is discussed. The perspective and challenges for advanced MOF-based composites are proposed at the end of this contribution.
Collapse
Affiliation(s)
- Yana Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhiquan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huilin Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xinchen Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Chu Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Fang Jun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Peng Yu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Dan Wu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
5
|
Liu S, Lai C, Liu X, Li B, Zhang C, Qin L, Huang D, Yi H, Zhang M, Li L, Wang W, Zhou X, Chen L. Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213520] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Ji J, Chung Y, Hyun K, Chung KY, Kwon Y. Effect of axial ligand on the performance of hemin based catalysts and their use for fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Márquez A, Santiago S, Domínguez C, Muñoz‐Berbel X, Guirado G. Photoelectro‐Enzymatic Glucose Reusable Biosensor by Using Dithienylethene Mediators. Chemistry 2020; 26:8714-8719. [DOI: 10.1002/chem.202000865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/04/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Augusto Márquez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC) Bellaterra (Barcelona) 08193 Spain
| | - Sara Santiago
- Departament de QuímicaUniversitat Autònoma de Barcelona Bellaterra (Barcelona) 08193 Spain
| | - Carlos Domínguez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC) Bellaterra (Barcelona) 08193 Spain
| | - Xavier Muñoz‐Berbel
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC) Bellaterra (Barcelona) 08193 Spain
| | - Gonzalo Guirado
- Departament de QuímicaUniversitat Autònoma de Barcelona Bellaterra (Barcelona) 08193 Spain
| |
Collapse
|
8
|
Leconte N, Gentil S, Molton F, Philouze C, Le Goff A, Thomas F. Complexes of the Bis(di‐
tert
‐butyl‐aniline)amine Pincer Ligand: The Case of Copper. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Solène Gentil
- CEA, CNRS Univ. Grenoble Alpes 38000 Grenoble France
- CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux Univ. Grenoble Alpes 38000 Grenoble France
| | | | | | - Alan Le Goff
- CEA, CNRS Univ. Grenoble Alpes 38000 Grenoble France
| | | |
Collapse
|
9
|
Zhao P, Chen S, Zhou J, Zhang S, Huo D, Hou C. A novel Fe-hemin-metal organic frameworks supported on chitosan-reduced graphene oxide for real-time monitoring of H 2O 2 released from living cells. Anal Chim Acta 2020; 1128:90-98. [PMID: 32825916 DOI: 10.1016/j.aca.2020.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 01/18/2023]
Abstract
Herein, a kind of novel hemin-based metal organic frameworks (Fe-hemin-MOFs) with unique peroxidase-like bioactivity was developed for the first time. The synthesized Fe-hemin-MOFs exhibited satisfactory catalytic activity toward hydrogen peroxide (H2O2). When it was further supported on Chitosan-reduced graphene oxide (CS-rGO), amplified electrochemical signal could be obtained. The Fe-hemin-MOFs/CS-rGO composite was used to construct a novel H2O2 electrochemical sensor. The electrocatalytic reduction of H2O2 displayed two segments linearity range from 1 to 61 μM and 61-1311 μM, as well as a low detection limit of 0.57 μM. Furthermore, the proposed sensor was successfully used for real-time monitoring of H2O2 released from living cells, which extended the practical application of MOFs-based sensors in monitoring the pathological process in living cells.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Sha Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jun Zhou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Suyi Zhang
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China. https://
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China. https://
| |
Collapse
|
10
|
Huang L, Chen J, Gan L, Wang J, Dong S. Single-atom nanozymes. SCIENCE ADVANCES 2019; 5:eaav5490. [PMID: 31058221 PMCID: PMC6499548 DOI: 10.1126/sciadv.aav5490] [Citation(s) in RCA: 480] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/21/2019] [Indexed: 05/09/2023]
Abstract
Conventional nanozyme technologies face formidable challenges of intricate size-, composition-, and facet-dependent catalysis and inherently low active site density. We discovered a new class of single-atom nanozymes with atomically dispersed enzyme-like active sites in nanomaterials, which significantly enhanced catalytic performance, and uncovered the underlying mechanism. With oxidase catalysis as a model reaction, experimental studies and theoretical calculations revealed that single-atom nanozymes with carbon nanoframe-confined FeN5 active centers (FeN5 SA/CNF) catalytically behaved like the axial ligand-coordinated heme of cytochrome P450. The definite active moieties and crucial synergistic effects endow FeN5 SA/CNF with a clear electron push-effect mechanism, as well as the highest oxidase-like activity among other nanozymes (the rate constant is 70 times higher than that of commercial Pt/C) and versatile antibacterial applications. These suggest that the single-atom nanozymes have great potential to become the next-generation nanozymes.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Linfeng Gan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
12
|
Niroula J, Premaratne G, Ali Shojaee S, Lucca DA, Krishnan S. Combined covalent and noncovalent carboxylation of carbon nanotubes for sensitivity enhancement of clinical immunosensors. Chem Commun (Camb) 2018; 52:13039-13042. [PMID: 27757453 DOI: 10.1039/c6cc07022a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report here for the first time with quantitative details that the combination of pi-pi stacking of pyrenecarboxylic acid with chemically carboxylated multiwalled carbon nanotubes (MWNT-COOH) offers superior sensitivity compared to MWNT-COOH alone for serum insulin measurements and that this combination is broadly applicable for biosensors, drug delivery, and catalytic systems.
Collapse
Affiliation(s)
- Jinesh Niroula
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Gayan Premaratne
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | - S Ali Shojaee
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Don A Lucca
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
13
|
Onoda A, Umeda Y, Hayashi T. Cofactor-specific Anchoring of Horseradish Peroxidase onto a Polythiophene-modified Electrode. CHEM LETT 2017. [DOI: 10.1246/cl.170837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
| | - Yasunari Umeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
| |
Collapse
|
14
|
Lv S, Zhang K, Lin Z, Tang D. Novel photoelectrochemical immunosensor for disease-related protein assisted by hemin/G-quadruplex-based DNAzyme on gold nanoparticles to enhance cathodic photocurrent on p-CuBi2O4 semiconductor. Biosens Bioelectron 2017; 96:317-323. [DOI: 10.1016/j.bios.2017.05.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
|
15
|
Botta L, Bizzarri BM, Crucianelli M, Saladino R. Advances in biotechnological synthetic applications of carbon nanostructured systems. J Mater Chem B 2017; 5:6490-6510. [PMID: 32264413 DOI: 10.1039/c7tb00764g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the last few years carbon nanostructures have been applied for the immobilization of enzymes and biomimetic organo-metallic species useful for biotechnological applications. The nature of the support and the method of immobilization are responsible for the stability, reactivity and selectivity of the system. In this review, we focus on the recent advances in the use of carbon nanostructures, carbon nanotubes, carbon nanorods, fullerene and graphene for the preparation of biocatalytic and biomimetic systems and for their application in the development of green chemical processes.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| | | | | | | |
Collapse
|
16
|
Gross AJ, Chen X, Giroud F, Abreu C, Le Goff A, Holzinger M, Cosnier S. A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00738] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrew. J. Gross
- Department of Molecular
Chemistry,
UMR CNRS-UGA 5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Xiaohong Chen
- Department of Molecular
Chemistry,
UMR CNRS-UGA 5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Fabien Giroud
- Department of Molecular
Chemistry,
UMR CNRS-UGA 5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Caroline Abreu
- Department of Molecular
Chemistry,
UMR CNRS-UGA 5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Alan Le Goff
- Department of Molecular
Chemistry,
UMR CNRS-UGA 5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Michael Holzinger
- Department of Molecular
Chemistry,
UMR CNRS-UGA 5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Serge Cosnier
- Department of Molecular
Chemistry,
UMR CNRS-UGA 5250, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
17
|
Liu Y, Zhang Y, Hua H, Li Y. Fabrication of single Pt@Au nanowire electrodes for monitoring hydrogen peroxide released from living cells. RSC Adv 2017. [DOI: 10.1039/c7ra08085a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single Pt@AuNWEs were fabricated by a Cu UPD/Pt redox replacement technique, and were applied to monitoring H2O2 released from living cells.
Collapse
Affiliation(s)
- Yong Liu
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- P. R. China
| | - Yaoyao Zhang
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- P. R. China
| | - Hongmei Hua
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- P. R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- P. R. China
| |
Collapse
|
18
|
Wang L, Yang H, He J, Zhang Y, Yu J, Song Y. Cu-Hemin Metal-Organic-Frameworks/Chitosan-Reduced Graphene Oxide Nanocomposites with Peroxidase-Like Bioactivity for Electrochemical Sensing. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.162] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Li R, Liu X, Qiu W, Zhang M. In Vivo Monitoring of H2O2 with Polydopamine and Prussian Blue-coated Microelectrode. Anal Chem 2016; 88:7769-76. [DOI: 10.1021/acs.analchem.6b01765] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ruixin Li
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaomeng Liu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wanling Qiu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
20
|
Isaka Y, Oyama K, Yamada Y, Suenobu T, Fukuzumi S. Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01845e] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2O2 was produced from H2O and O2 using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts with a Ru photocatalyst in water under visible light irradiation.
Collapse
Affiliation(s)
- Yusuke Isaka
- Department of Materials and Life Science
- Graduate School of Engineering
- Osaka University
- ALCA and SENTAN
- Japan Science and Technology Agency (JST)
| | - Kohei Oyama
- Department of Materials and Life Science
- Graduate School of Engineering
- Osaka University
- ALCA and SENTAN
- Japan Science and Technology Agency (JST)
| | - Yusuke Yamada
- Department of Applied Chemistry and Bioengineering
- Graduate School of Engineering
- Osaka City University
- Osaka
- Japan
| | - Tomoyoshi Suenobu
- Department of Materials and Life Science
- Graduate School of Engineering
- Osaka University
- ALCA and SENTAN
- Japan Science and Technology Agency (JST)
| | - Shunichi Fukuzumi
- Department of Materials and Life Science
- Graduate School of Engineering
- Osaka University
- ALCA and SENTAN
- Japan Science and Technology Agency (JST)
| |
Collapse
|
21
|
Nath I, Chakraborty J, Verpoort F. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem Soc Rev 2016; 45:4127-70. [DOI: 10.1039/c6cs00047a] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review, we have portrayed the structure, synthesis and applications of a variety of biomimetic MOFs from an unprecedented angle.
Collapse
Affiliation(s)
- Ipsita Nath
- Laboratory of Organometallics
- Catalysis and Ordered Materials
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Center for Chemical and Material Engineering
- Wuhan University of Technology
| | - Jeet Chakraborty
- Laboratory of Organometallics
- Catalysis and Ordered Materials
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Center for Chemical and Material Engineering
- Wuhan University of Technology
| | - Francis Verpoort
- Laboratory of Organometallics
- Catalysis and Ordered Materials
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Center for Chemical and Material Engineering
- Wuhan University of Technology
| |
Collapse
|
22
|
Isaka Y, Yamada Y, Suenobu T, Nakagawa T, Fukuzumi S. Production of hydrogen peroxide by combination of semiconductor-photocatalysed oxidation of water and photocatalytic two-electron reduction of dioxygen. RSC Adv 2016. [DOI: 10.1039/c6ra06814f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrogen peroxide (H2O2) was produced from H2O and O2via semiconductor-photocatalysed oxidation of H2O in combination with photocatalytic two-electron reduction of O2 with [RuII((MeO)2bpy)3]2+ ((MeO)2bpy = 4,4′-dimethoxy-2,2′-bipyridine) in water.
Collapse
Affiliation(s)
- Yusuke Isaka
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- ALCA
- Japan Science and Technology Agency (JST)
| | - Yusuke Yamada
- Department of Applied Chemistry and Bioengineering
- Graduate School of Engineering
- Osaka City University
- Japan
| | - Tomoyoshi Suenobu
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- ALCA
- Japan Science and Technology Agency (JST)
| | | | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
- Faculty of Science and Technology
| |
Collapse
|
23
|
Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00240k] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics, which have found broad applications in various areas including bionanotechnology and beyond.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Yihui Hu
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Hui Wei
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| |
Collapse
|
24
|
Lalaoui N, Le Goff A, Holzinger M, Cosnier S. Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction. Chemistry 2015; 21:16868-73. [DOI: 10.1002/chem.201502377] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 12/26/2022]
|