1
|
Yadagiri B, Kaswan RR, Tagare J, Kumar V, Rajesh MN, Singh SP, Karr PA, D'Souza F, Giribabu L. Excited Charge Separation in a π-Interacting Phenothiazine-Zinc Porphyrin-Fullerene Donor-Acceptor Conjugate. J Phys Chem A 2024; 128:4233-4241. [PMID: 38758579 DOI: 10.1021/acs.jpca.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We have designed, synthesized, and characterized a donor-acceptor triad, SPS-PPY-C60, that consists of a π-interacting phenothiazine-linked porphyrin as a donor and sensitizer and fullerene as an acceptor to seek charge separation upon photoexcitation. The optical absorption spectrum revealed red-shifted Soret and Q-bands of porphyrin due to charge transfer-type interactions involving the two ethynyl bridges carrying electron-rich and electron-poor substituents. The redox properties suggested that the phenothiazine-porphyrin part of the molecule is easier to oxidize and the fullerene part is easier to reduce. DFT calculations supported the redox properties wherein the electron density of the highest molecular orbital (HOMO) was distributed over the donor phenothiazine-porphyrin entity while the lowest unoccupied molecular orbital (LUMO) was distributed over the fullerene acceptor. TD-DFT studies suggested the involvement of both the S2 and S1 states in the charge transfer process. The steady-state emission spectrum, when excited either at porphyrin Soret or visible band absorption maxima, revealed quenched emission both in nonpolar and polar solvents, suggesting the occurrence of excited state events. Finally, femtosecond transient absorption spectral studies were performed to witness the charge separation by utilizing solvents of different polarities. The transient data was further analyzed by GloTarAn by fitting the data with appropriate models to describe photochemical events. From this, the average lifetime of the charge-separated state calculated was found to be 169 ps in benzonitrile, 319 ps in dichlorobenzene, 1.7 ns in toluene for Soret band excitation, and ∼320 ps for Q-band excitation in benzonitrile.
Collapse
Affiliation(s)
- B Yadagiri
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| | - Ram Ratan Kaswan
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Jairam Tagare
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Vinay Kumar
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| | - Manne Naga Rajesh
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| | - Surya Prakash Singh
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Lingamallu Giribabu
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
2
|
Benavides PA, Gordillo MA, Thibodeaux E, Yadav A, Johnson E, Sachdeva R, Saha S. Rare Guest-Induced Electrical Conductivity of Zn-Porphyrin Metallacage Inclusion Complexes Featuring π-Donor/Acceptor/Donor Stacks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1234-1242. [PMID: 38108279 DOI: 10.1021/acsami.3c15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Charge-transfer (CT) interactions between co-facially aligned π-donor/acceptor (π-D/A) arrays engender unique optical and electronic properties that could benefit (supra)molecular electronics and energy technologies. Herein, we demonstrate that a tetragonal prismatic metal-organic cage (MOC18+) having two parallel π-donor tetrakis(4-carboxyphenyl)-Zn-porphyrin (ZnTCPP) faces selectively intercalate planar π-acceptor guests, such as hexaazatriphenylene hexacarbonitrile (HATHCN), hexacyanotriphenylene (HCTP), and napthanelediimide (NDI) derivatives, forming 1:1 πA@MOC18+ inclusion complexes featuring supramolecular π-D/A/D triads. The π-acidity of intercalated π-acceptors (HATHCN ≫ HCTP ≈ NDIs) dictated the nature and strength of their interactions with the ZnTCPP faces, which in turn influenced the binding affinities (Ka) and optical and electronic properties of corresponding πA@MOC18+ inclusion complexes. Owing to its strongest CT interaction with ZnTCPP faces, the most π-acidic HATHCN guest enjoyed the largest Ka (5 × 106 M-1), competitively displaced weaker π-acceptors from the MOC18+ cavity, and generated the highest electrical conductivity (2.1 × 10-6 S/m) among the πA@MOC18+ inclusion complexes. This work demonstrates a unique through-space charge transport capability of πA@MOC18+ inclusion complexes featuring supramolecular π-D/A/D triads, which generated tunable electrical conductivity, which is a rare but much coveted electronic property of such supramolecular assemblies that could further expand their utility in future technologies.
Collapse
Affiliation(s)
- Paola A Benavides
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Monica A Gordillo
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Evan Thibodeaux
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Ashok Yadav
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Evan Johnson
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Rakesh Sachdeva
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| | - Sourav Saha
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd., Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Spin Orbit Coupling in Orthogonal Charge Transfer States: (TD-)DFT of Pyrene-Dimethylaniline. Molecules 2022; 27:molecules27030891. [PMID: 35164162 PMCID: PMC8839636 DOI: 10.3390/molecules27030891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
The conformational dependence of the matrix element for spin-orbit coupling and of the electronic coupling for charge separation are determined for an electron donor-acceptor system containing a pyrene acceptor and a dimethylaniline donor. Different kinetic and energetic aspects that play a role in the spin-orbit charge transfer intersystem crossing (SOCT-ISC) mechanism are discussed. This includes parameters related to initial charge separation and the charge recombination pathways using the Classical Marcus Theory of electron transfer. The spin-orbit coupling, which plays a significant role in charge recombination to the triplet state, can be probed by (TD)-DFT, using the latter as a tool to understand and predict the SOCT-ISC mechanism. The matrix elements for spin-orbit coupling for acetone and 4-thio-thymine are used for benchmarking. (Time Dependent-) Density Functional Theory (DFT and TD-DFT) calculations are applied using the quantum chemical program Amsterdam Density Functional (ADF).
Collapse
|
4
|
Zhang Y, Ren K, Wang L, Wang L, Fan Z. Porphyrin-based heterogeneous photocatalysts for solar energy conversion. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
5
|
Guerra WD, Odella E, Urrutia MN, Liddell PA, Moore TA, Moore AL. Models to study photoinduced multiple proton coupled electron transfer processes. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In water-oxidizing photosynthetic organisms, excitation of the reaction-center chlorophylls (P680) triggers a cascade of electron and proton transfer reactions that establish charge separation across the membrane and proton-motive force. An early oxidation step in this process involves proton-coupled electron transfer (PCET) via a tyrosine-histidine redox relay (Yz-H190). Herein, we report the synthesis and structural characterization of two isomeric dyads designed to model this PCET process. Both are based on the same high potential fluorinated porphyrin (model for P680), linked to isomeric pyridylbenzimidazole-phenols (models for Yz-H190). The two isomeric dyads have different hydrogen bond frameworks, which is expected to change the PCET photooxidation mechanism. In these dyads, 1H NMR evidence indicates that in one dyad the hydrogen bond network would support a Grotthuss-type proton transfer process, whereas in the other the hydrogen bond network is interrupted. Photoinduced one-electron, two-proton transfer is expected to occur in the fully hydrogen-bonded dyad upon oxidation of the phenol by the excited state of the porphyrin. In contrast for the isomer with the interrupted hydrogen bond network, an ultrafast photoinduced one-electron one-proton transfer process is anticipated, followed by a much slower proton transfer to the terminal proton acceptor. Understanding the nature of photoinduced PCET mechanisms in these biomimetic models will provide insights into the design of future generations of artificial constructs involved in energy conversion schemes.
Collapse
Affiliation(s)
- Walter D. Guerra
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - María N. Urrutia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Paul A. Liddell
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
6
|
Bancroft L, Zhang J, Harvey SM, Krzyaniak MD, Zhang P, Schaller RD, Beratan DN, Young RM, Wasielewski MR. Charge Transfer and Spin Dynamics in a Zinc Porphyrin Donor Covalently Linked to One or Two Naphthalenediimide Acceptors. J Phys Chem A 2021; 125:825-834. [PMID: 33449684 DOI: 10.1021/acs.jpca.0c10471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quantum coherence effects on charge transfer and spin dynamics in a system having two degenerate electron acceptors are studied using a zinc 5,10,15-tri(n-pentyl)-20-phenylporphyrin (ZnP) electron donor covalently linked to either one or two naphthalene-1,8:4,5-bis(dicarboximide) (NDI) electron acceptors using an anthracene (An) spacer, ZnP-An-NDI (1) and ZnP-An-NDI2 (2), respectively. Following photoexcitation of 1 and 2 in toluene at 295 K, femtosecond transient absorption spectroscopy shows that the electron transfer (ET) rate constant for 2 is about three times larger than that of 1, which can be accounted for by the statistical nature of incoherent ET as well as the electron couplings for the charge separation reactions. In contrast, the rate constant for charge recombination (CR) of 1 is about 25% faster than that of 2. Using femtosecond transient infrared spectroscopy and theoretical analysis, we find that the electron on NDI2•- in 2 localizes onto one of the two NDIs prior to CR, thus precluding electronically coherent CR from NDI2•-. Conversely, CR in both 1 and 2 is spin coherent as indicated by the observation of a resonance in the 3*ZnP yield following CR as a function of applied magnetic field, giving spin-spin exchange interaction energies of 2J = 210 and 236 mT, respectively, where the line width of the resonance for 2 is greater than 1. These data show that while CR is a spin-coherent process, incoherent hopping of the electron between the two NDIs in 2, consistent with the lack of delocalization noted above, results in greater spin decoherence in 2 relative to 1.
Collapse
Affiliation(s)
- Laura Bancroft
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jinyuan Zhang
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Samantha M Harvey
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Richard D Schaller
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States.,Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biochemistry and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
7
|
Nelson JN, Zhang J, Zhou J, Rugg BK, Krzyaniak MD, Wasielewski MR. CNOT gate operation on a photogenerated molecular electron spin-qubit pair. J Chem Phys 2020; 152:014503. [PMID: 31914753 DOI: 10.1063/1.5128132] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Implementation of the two-qubit controlled-NOT (CNOT) gate is necessary to develop a complete set of universal gates for quantum computing. Here, we demonstrate that a photogenerated radical (spin qubit) pair within a covalent donor-chromophore-acceptor molecule can be used to successfully execute a CNOT gate with high fidelity. The donor is tetrathiafulvalene (TTF), the chromophore is 8-aminonaphthalene-1,8-dicarboximide (ANI), and the acceptor is pyromellitimide (PI). Selective photoexcitation of ANI with a 416 nm laser pulse results in subnanosecond formation of the TTF•+-ANI-PI•- radical (spin qubit) pair at 85 K having a 1.8 µs phase memory time. This is sufficiently long to execute a CNOT gate using a sequence of five microwave pulses followed by a sequence of two pulses that read out all the elements of the density matrix. Comparing these data to a simulation of the data that assumes ideal conditions results in a fidelity of 0.97 for the execution of the CNOT gate. These results show that photogenerated molecular spin qubit pairs can be used to execute this essential quantum gate at modest temperatures, which affords the possibility that chemical synthesis can be used to develop structures to execute more complex quantum logic operations using electron spins.
Collapse
Affiliation(s)
- Jordan N Nelson
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jinyuan Zhang
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jiawang Zhou
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Brandon K Rugg
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Matthew D Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
8
|
Rugg BK, Krzyaniak MD, Phelan BT, Ratner MA, Young RM, Wasielewski MR. Photodriven quantum teleportation of an electron spin state in a covalent donor–acceptor–radical system. Nat Chem 2019; 11:981-986. [DOI: 10.1038/s41557-019-0332-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/13/2019] [Indexed: 11/09/2022]
|
9
|
Olshansky JH, Krzyaniak MD, Young RM, Wasielewski MR. Photogenerated Spin-Entangled Qubit (Radical) Pairs in DNA Hairpins: Observation of Spin Delocalization and Coherence. J Am Chem Soc 2019; 141:2152-2160. [DOI: 10.1021/jacs.8b13155] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jacob H. Olshansky
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
10
|
Nelson JN, Zhang J, Zhou J, Rugg BK, Krzyaniak MD, Wasielewski MR. Effect of Electron–Nuclear Hyperfine Interactions on Multiple-Quantum Coherences in Photogenerated Covalent Radical (Qubit) Pairs. J Phys Chem A 2018; 122:9392-9402. [DOI: 10.1021/acs.jpca.8b07556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jordan N. Nelson
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jinyuan Zhang
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jiawang Zhou
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brandon K. Rugg
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
11
|
Wu Y, Zhou J, Nelson JN, Young RM, Krzyaniak MD, Wasielewski MR. Covalent Radical Pairs as Spin Qubits: Influence of Rapid Electron Motion between Two Equivalent Sites on Spin Coherence. J Am Chem Soc 2018; 140:13011-13021. [DOI: 10.1021/jacs.8b08105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yilei Wu
- Department of Chemistry and Institute for Sustainability and Energy, Northwestern Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jiawang Zhou
- Department of Chemistry and Institute for Sustainability and Energy, Northwestern Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jordan N. Nelson
- Department of Chemistry and Institute for Sustainability and Energy, Northwestern Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy, Northwestern Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy, Northwestern Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy, Northwestern Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
12
|
Khadria A, de Coene Y, Gawel P, Roche C, Clays K, Anderson HL. Push-pull pyropheophorbides for nonlinear optical imaging. Org Biomol Chem 2018; 15:947-956. [PMID: 28054076 DOI: 10.1039/c6ob02319c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyropheophorbide-a methyl ester (PPa-OMe) has been modified by attaching electron-donor and -acceptor groups to alter its linear and nonlinear optical properties. Regioselective bromination of the terminal vinyl position and Suzuki coupling were used to attach a 4-(N,N-diethylaminophenyl) electron-donor group. The electron-acceptor dicyanomethylene was attached at the cyclic ketone position through a Knoevenagel condensation. Four different derivatives of PPa-OMe, containing either electron-donor or electron-acceptor groups, or both, were converted to hydrophilic bis-TEG amides to generate a series of amphiphilic dyes. The absorption and emission properties of all the dyes were compared to a previously reported push-pull type porphyrin-based dye and a commercial push-pull styryl dye, FM4-64. Electrochemical measurements reveal that the electron donor group causes a greater decrease in HOMO-LUMO gap than the electron-acceptor. TD-DFT calculations on optimized geometries (DFT) of all four dyes show that the HOMO is mostly localized on the donor, 4-(N,N-diethylaminophenyl), while the LUMO is distributed around the chlorin ring and the electron-acceptor. Hyper-Rayleigh scattering experiments show that the first-order hyperpolarizabilities of the dyes increase on attaching either electron-donor or -acceptor groups, having the highest value when both the donor and acceptor groups are attached. Two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) images of the bis-TEG amide attached dyes in lipid monolayer-coated droplets of water-in-oil reveal that the TPEF and SHG involve transition dipole moments in different orientations.
Collapse
Affiliation(s)
- Anjul Khadria
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Yovan de Coene
- Department of Chemistry, University of Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Przemyslaw Gawel
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Cécile Roche
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Koen Clays
- Department of Chemistry, University of Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Harry L Anderson
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
13
|
Barthelmes K, Sittig M, Winter A, Schubert US. Molecular Dyads and Triads Based on Phenothiazine and π-Extended Tetrathiafulvalene Donors, Bis(terpyridine)ruthenium(II) Complexes, and Polyoxometalates. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Barthelmes
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Maria Sittig
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
14
|
Sun H, Liu D, Wang T, Lu T, Li W, Ren S, Hu W, Wang L, Zhou X. Enhanced Internal Quantum Efficiency in Dye-Sensitized Solar Cells: Effect of Long-Lived Charge-Separated State of Sensitizers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9880-9891. [PMID: 28256820 DOI: 10.1021/acsami.6b14993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effective charge separation is one of the key determinants for the photovoltaic performance of the dye-sensitized solar cells (DSSCs). Herein, two charge-separated (CS) sensitizers, MTPA-Pyc and YD-Pyc, have been synthesized and applied in DSSCs to investigate the effect of the CS states of the sensitizers on the device's efficiency. The CS states with lifetimes of 64 and 177 ns for MTPA-Pyc and YD-Pyc, respectively, are formed via the photoinduced electron transfer (PET) from the 4-styryltriphenylamine (MTPA) or 4-styrylindoline (YD) donor to the pyrimidine cyanoacrylic acid (Pyc) acceptor. DSSCs based on MTPA-Pyc and YD-Pyc exhibit high internal quantum efficiency (IQE) values of over 80% from 400 to 600 nm. In comparison, the IQEs of the charge transfer (CT) sensitizer cells are 10-30% lower in the same wavelength range. The enhanced IQE values in the devices based on the CS sensitizers are ascribed to the higher electron injection efficiencies and slower charge recombination. The results demonstrate that taking advantage of the CS states in the sensitizers can be a promising strategy to improve the IQEs and further enhance the overall efficiencies of the DSSCs.
Collapse
Affiliation(s)
- Haiya Sun
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, 300072, China
| | - Dongzhi Liu
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, 300072, China
- Tianjin Engineering Research Center of Functional Fine Chemicals , Tianjin, 300072, China
| | - Tianyang Wang
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, 300072, China
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University , Carbondale, Illinois 62901, United States
| | - Ting Lu
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, 300072, China
| | - Wei Li
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, 300072, China
- Tianjin Engineering Research Center of Functional Fine Chemicals , Tianjin, 300072, China
| | - Siyao Ren
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, 300072, China
| | - Wenping Hu
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, 300072, China
| | - Lichang Wang
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, 300072, China
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University , Carbondale, Illinois 62901, United States
| | - Xueqin Zhou
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin, 300072, China
- Tianjin Engineering Research Center of Functional Fine Chemicals , Tianjin, 300072, China
| |
Collapse
|
15
|
Triphenylamine corrole dyads: Synthesis, characterization and substitution effect on photophysical properties. J CHEM SCI 2017. [DOI: 10.1007/s12039-016-1219-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Achary BS, Gokulnath S, Ghosh S, Mrinalini M, Prasanthkumar S, Giribabu L. Unprecedented Charge-Transfer Complex of Fused Diporphyrin as Near-Infrared Absorption-Induced High-Aspect-Ratio Nanorods. Chem Asian J 2016; 11:3498-3502. [PMID: 27781413 DOI: 10.1002/asia.201601363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 12/22/2022]
Abstract
Charge-transfer (CT) complexes of near-infrared absorbing systems have been unknown until now. Consequently, structural similarities between donor and acceptor are rather important to achieve this phenomenon. Herein, we report electron donors such as non-fused diporphyrin-anthracene (DP), zinc diporphyrin-anthracene (ZnDP) and fused zinc diporphyrin-anthracene (FZnDP) in which FZnDP absorbs in NIR region and permits a CT complex with the electron acceptor, perylene diimide (PDI) in CHCl3 exclusively. UV/Vis-NIR absorption, 1 H NMR, NOESY and powder X-ray diffraction analysis demonstrated that the CT complex formation occurs by π-π stacking between perylene units in FZnDP and PDI upon mixing together in a 1:1 molar concentration in CHCl3 , unlike non-fused ZnDP and DP. TEM and AFM images revealed that the CT complex initially forms nanospheres leading to nanorods by diffusion of CH3 OH vapors into the CHCl3 solution of FZnDP/PDI (1:1 molar ratio). Therefore, these CT nanorods could lead to significant advances in optical, biological and ferroelectric applications.
Collapse
Affiliation(s)
- B Shivaprasad Achary
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Scientific and Educational Research (IISER), Trivandrum-695016, Kerala, India
| | - Samrat Ghosh
- Photoscience&Photonics Division, CSIR-National Institute of Interdisciplinary Science and Technology (NIIST), Trivandrum-695019, Kerala, India
| | - Madoori Mrinalini
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India
| | - Seelam Prasanthkumar
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India
| | - Lingamallu Giribabu
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.,Academy of Scientific and Innovation Research (AcSIR), New Delhi, India
| |
Collapse
|
17
|
Barthelmes K, Winter A, Schubert US. Dyads and Triads Based on Phenothiazine, Bis(terpyridine)ruthenium(II) Complexes, and Fullerene. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Barthelmes
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
18
|
Fernández-Ariza J, Krick Calderón RM, Rodríguez-Morgade MS, Guldi DM, Torres T. Phthalocyanine–Perylenediimide Cart Wheels. J Am Chem Soc 2016; 138:12963-12974. [DOI: 10.1021/jacs.6b07432] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Javier Fernández-Ariza
- Departamento
de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Rafael M. Krick Calderón
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen−Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | | | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen−Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Tomás Torres
- Departamento
de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- IMDEA-Nanociencia, c/ Faraday 9, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
19
|
Lebedeva MA, Chamberlain TW, Scattergood PA, Delor M, Sazanovich IV, Davies ES, Suyetin M, Besley E, Schröder M, Weinstein JA, Khlobystov AN. Stabilising the lowest energy charge-separated state in a {metal chromophore - fullerene} assembly: a tuneable panchromatic absorbing donor-acceptor triad. Chem Sci 2016; 7:5908-5921. [PMID: 30034733 PMCID: PMC6024556 DOI: 10.1039/c5sc04271b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/19/2016] [Indexed: 11/21/2022] Open
Abstract
Photoreduction of fullerene and the consequent stabilisation of a charge-separated state in a donor-acceptor assembly have been achieved, overcoming the common problem of a fullerene-based triplet state being an energy sink that prevents charge-separation. A route to incorporate a C60-fullerene electron acceptor moiety into a catecholate-Pt(ii)-diimine photoactive dyad, which contains an unusually strong electron donor, 3,5-di-tert-butylcatecholate, has been developed. The synthetic methodology is based on the formation of the aldehyde functionalised bipyridine-Pt(ii)-3,5-di-tert-butylcatechol dyad which is then added to the fullerene cage via a Prato cycloaddition reaction. The resultant product is the first example of a fullerene-diimine-Pt-catecholate donor-acceptor triad, C60bpy-Pt-cat. The triad exhibits an intense solvatochromic absorption band in the visible region due to catechol-to-diimine charge-transfer, which, together with fullerene-based transitions, provides efficient and tuneable light harvesting of the majority of the UV/visible spectral range. Cyclic voltammetry, EPR and UV/vis/IR spectroelectrochemistry reveal redox behaviour with a wealth of reversible reduction and oxidation processes forming multiply charged species and storing multiple redox equivalents. Ultrafast transient absorption and time resolved infrared spectroscopy, supported by molecular modelling, reveal the formation of a charge-separated state [C60˙-bpy-Pt-cat˙+] with a lifetime of ∼890 ps. The formation of cat˙+ in the excited state is evidenced directly by characteristic absorption bands in the 400-500 nm region, while the formation of C60˙- was confirmed directly by time-resolved infrared spectroscopy, TRIR. An IR-spectroelectrochemical study of the mono-reduced building block (C60-bpy)PtCl2, revealed a characteristic C60˙- vibrational feature at 1530 cm-1, which was also detected in the TRIR spectra. This combination of experiments offers the first direct IR-identification of C60˙- species in solution, and paves the way towards the application of transient infrared spectroscopy to the study of light-induced charge-separation in C60-containing assemblies, as well as fullerene films and fullerene/polymer blends in various OPV devices. Identification of the unique vibrational signature of a C60-anion provides a new way to follow photoinduced processes in fullerene-containing assemblies by means of time-resolved vibrational spectroscopy, as demonstrated for the fullerene-transition metal chromophore assembly with the lowest energy charge-separated excited state.
Collapse
Affiliation(s)
- Maria A Lebedeva
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
- Department of Materials , University of Oxford , 16 Parks Road , Oxford , OX1 3PS , UK .
| | - Thomas W Chamberlain
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
- School of Chemistry , University of Leeds , Leeds , LS2 9JT , UK
| | | | - Milan Delor
- Department of Chemistry , University of Sheffield , S3 7HF , UK .
| | - Igor V Sazanovich
- Department of Chemistry , University of Sheffield , S3 7HF , UK .
- Laser for Science Facility , Rutherford Appleton Laboratory , Harwell Science and Innovation Campus , Oxfordshire , OX11 0QX , UK
| | - E Stephen Davies
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
| | - Mikhail Suyetin
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
| | - Elena Besley
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
| | - Martin Schröder
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK
| | | | - Andrei N Khlobystov
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
- Nanoscale and Microscale Research Centre , University of Nottingham , University Park , Nottingham , NG7 2RD , UK
| |
Collapse
|
20
|
Horinouchi H, Sakai H, Araki Y, Sakanoue T, Takenobu T, Wada T, Tkachenko NV, Hasobe T. Controllable Electronic Structures and Photoinduced Processes of Bay-Linked Perylenediimide Dimers and a Ferrocene-Linked Triad. Chemistry 2016; 22:9631-41. [DOI: 10.1002/chem.201601058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Haruki Horinouchi
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi Yokohama Kanagawa 223-8522 Japan
| | - Hayato Sakai
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi Yokohama Kanagawa 223-8522 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials; Tohoku University; 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Tomo Sakanoue
- Department of Applied Physics; Waseda University; 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Taishi Takenobu
- Department of Applied Physics; Waseda University; 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials; Tohoku University; 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Nikolai V. Tkachenko
- Department of Chemistry and Bioengineering; Tampere University of Technology; P.O. Box 541 33101 Tampere Finland
| | - Taku Hasobe
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
21
|
Palao E, Slanina T, Klán P. Construction of the carbon–chalcogen (S, Se, Te) bond at the 2,6-positions of BODIPY via Stille cross-coupling reaction. Chem Commun (Camb) 2016; 52:11951-11954. [DOI: 10.1039/c6cc06923a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Novel 2-chalcogen- or 2,6-dichalcogen-BODIPY derivatives were synthesized by a Pd-catalyzed C–heteroatom Stille cross-coupling reaction, overcoming the limitations of SNAr.
Collapse
Affiliation(s)
- E. Palao
- Department of Chemistry and RECETOX
- Faculty of Science
- Masaryk University
- Brno
- Czech Republic
| | - T. Slanina
- Department of Chemistry and RECETOX
- Faculty of Science
- Masaryk University
- Brno
- Czech Republic
| | - P. Klán
- Department of Chemistry and RECETOX
- Faculty of Science
- Masaryk University
- Brno
- Czech Republic
| |
Collapse
|
22
|
Zhao L, Qu R, Li A, Ma R, Shi L. Cooperative self-assembly of porphyrins with polymers possessing bioactive functions. Chem Commun (Camb) 2016; 52:13543-13555. [DOI: 10.1039/c6cc05449h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review covers recent research on design strategies for the cooperative self-assembly of porphyrins with polymers and its implementation as bioactive assembly.
Collapse
Affiliation(s)
- Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Materials Science and Engineering
- Tianjin Polytechnic University
- Tianjin
- P. R. China
| | - Rui Qu
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|