1
|
Milanesi F, Roelens S, Francesconi O. Towards Biomimetic Recognition of Glycans by Synthetic Receptors. Chempluschem 2024; 89:e202300598. [PMID: 37942862 DOI: 10.1002/cplu.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Carbohydrates are abundant in Nature, where they are mostly assembled within glycans as free polysaccharides or conjugated to a variety of biological molecules such as proteins and lipids. Glycans exert several functions, including protein folding, stability, solubility, resistance to proteolysis, intracellular traffic, antigenicity, and recognition by carbohydrate-binding proteins. Interestingly, misregulation of their biosynthesis that leads to changes in glycan structures is frequently recognized as a mark of a disease state. Because of glycan ubiquity, carbohydrate binding agents (CBAs) targeting glycans can lead to a deeper understanding of their function and to the development of new diagnostic and prognostic strategies. Synthetic receptors selectively recognizing specific carbohydrates of biological interest have been developed over the past three decades. In addition to the success obtained in the effective recognition of monosaccharides, synthetic receptors recognizing more complex guests have also been developed, including di- and oligosaccharide fragments of glycans, shedding light on the structural and functional requirements necessary for an effective receptor. In this review, the most relevant achievements in molecular recognition of glycans and their fragments will be summarized, highlighting potentials and future perspectives of glycan-targeting synthetic receptors.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
2
|
Lee CH, Park S, Kim S, Hyun JY, Lee HS, Shin I. Engineering of cell-surface receptors for analysis of receptor internalization and detection of receptor-specific glycosylation. Chem Sci 2024; 15:555-565. [PMID: 38179521 PMCID: PMC10762726 DOI: 10.1039/d3sc05054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) is a cell-surface glycoprotein that is involved mainly in cell proliferation. Overexpression of this receptor is intimately related to the development of a broad spectrum of tumors. In addition, glycans linked to the EGFR are known to affect its EGF-induced activation. Because of the pathophysiological significance of the EGFR, we prepared a fluorescently labeled EGFR (EGFR128-AZDye 488) on the cell surface by employing the genetic code expansion technique and bioorthogonal chemistry. EGFR128-AZDye 488 was initially utilized to investigate time-dependent endocytosis of the EGFR in live cells. The results showed that an EGFR inhibitor and antibody suppress endocytosis of the EGFR promoted by the EGF, and that lectins recognizing glycans of the EGFR do not enhance EGFR internalization into cells. Observations made in studies of the effects of appended glycans on the entry of the EGFR into cells indicate that a de-sialylated or de-fucosylated EGFR is internalized into cells more efficiently than a wild-type EGFR. Furthermore, by using the FRET-based imaging method of cells which contain an EGFR linked to AZDye 488 (a FRET donor) and cellular glycans labeled with rhodamine (a FRET acceptor), sialic acid residues attached to the EGFR were specifically detected on the live cell surface. Taken together, the results suggest that a fluorescently labeled EGFR will be a valuable tool in studies aimed at gaining an understanding of cellular functions of the EGFR.
Collapse
Affiliation(s)
- Chang-Hee Lee
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Sookil Park
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Ji Young Hyun
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
3
|
Niosomes Functionalized with a Synthetic Carbohydrate Binding Agent for Mannose-Targeted Doxorubicin Delivery. Pharmaceutics 2023; 15:pharmaceutics15010235. [PMID: 36678863 PMCID: PMC9863333 DOI: 10.3390/pharmaceutics15010235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Niosomes are a potential tool for the development of active targeted drug delivery systems (DDS) for cancer therapy because of their excellent behaviour in encapsulating antitumorals and the possibility to easily functionalise their surface with targeting agents. Recently, some of us developed a synthetic carbohydrate binding agent (CBA) able to target the mannosidic residues of high-mannose-type glycans overexpressed on the surface of several cancer cell lines, promoting their apoptosis. In this article, we modified the structure of this mannose receptor to obtain an amphiphilic analogue suitable for the functionalization of doxorubicin-based niosomes. Several niosomal formulations and preparation methods were investigated deeply to finally obtain functionalized niosomes suitable for parental administration, which were stable for over six months and able to encapsulate up to 85% of doxorubicin (DOXO). In vitro studies, carried out towards triple-negative cancer cells (MDA-MB231), overexpressing high-mannose-type glycans, showed a cytotoxic activity comparable to that of DOXO but with an appreciable increment in apoptosis given by the CBA. Moreover, niosomal formulation was observed to reduce doxorubicin-induced cytotoxicity towards normal cell lines of rat cardiomyocytes (H9C2). This study is propaedeutic to further in vivo investigations that can aim to shed light on the antitumoral activity and pharmacokinetics of the developed active targeted DDS.
Collapse
|
4
|
Milanesi F, Unione L, Ardá A, Nativi C, Jiménez-Barbero J, Roelens S, Francesconi O. Biomimetic Tweezers for N-Glycans: Selective Recognition of the Core GlcNAc 2 Disaccharide of the Sialylglycopeptide SGP. Chemistry 2023; 29:e202203591. [PMID: 36597924 DOI: 10.1002/chem.202203591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In recent years, glycomics have shown how pervasive the role of carbohydrates in biological systems is and how chemical tools are essential to investigate glycan function and modulate carbohydrate-mediated processes. Biomimetic receptors for carbohydrates can carry out this task but, although significant affinities and selectivities toward simple saccharides have been achieved, targeting complex glycoconjugates remains a goal yet unattained. In this work we report the unprecedented recognition of a complex biantennary sialylglycopeptide (SGP) by a tweezers-shaped biomimetic receptor, which selectively binds to the core GlcNAc2 disaccharide of the N-glycan with an affinity of 170 μM. Because of the simple structure and the remarkable binding ability, this biomimetic receptor can represent a versatile tool for glycoscience, opening the way to useful applications.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy.,Magnetic Resonance Center CERM, University of Florence, Via L. Sacconi 6, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain.,Department of Organic Chemistry, II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940, Leioa, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
5
|
Abstract
Through their specific interactions with proteins, cellular glycans play key roles in a wide range of physiological and pathological processes. One of the main goals of research in the areas of glycobiology and glycomedicine is to understand glycan-protein interactions at the molecular level. Over the past two decades, glycan microarrays have become powerful tools for the rapid evaluation of interactions between glycans and proteins. In this review, we briefly describe methods used for the preparation of glycan probes and the construction of glycan microarrays. Next, we highlight applications of glycan microarrays to rapid profiling of glycan-binding patterns of plant, animal and pathogenic lectins, as well as other proteins. Finally, we discuss other important uses of glycan microarrays, including the rapid analysis of substrate specificities of carbohydrate-active enzymes, the quantitative determination of glycan-protein interactions, discovering high-affinity or selective ligands for lectins, and identifying functional glycans within cells. We anticipate that this review will encourage researchers to employ glycan microarrays in diverse glycan-related studies.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
6
|
Francesconi O, Donnici L, Fragai M, Pesce E, Bombaci M, Fasciani A, Manganaro L, Conti M, Grifantini R, De Francesco R, Nativi C, Roelens S. Synthetic carbohydrate-binding agents neutralize SARS-CoV-2 by inhibiting binding of the spike protein to ACE2. iScience 2022; 25:104239. [PMID: 35434540 PMCID: PMC8996466 DOI: 10.1016/j.isci.2022.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
Developing strategies against the SARS-CoV-2 is currently a main research subject. SARS-CoV-2 infects host cells by binding to human ACE2 receptors. Both, virus and ACE2, are highly glycosylated, and exploiting glycans of the SARS-CoV-2 envelope as binding sites for ACE2 represents a virus strategy for attacking the human host. We report here that a family of mannose-binding synthetic carbohydrate-binding agents (CBAs) inhibits SARS-CoV-2 infection, showing broad neutralizing activity vs. several variants of the spike protein. Preliminary tests indicated that the investigated CBAs interact with the spike protein rather than with ACE2. For a lead compound (IDS060), which has been selected among others for its lack of cytotoxicity, evidence of binding to the RBD of the spike protein has been found by NMR experiments, while competitive binding assays in the presence of IDS060 showed inhibition of binding of RBD to hACE2, although neutralizing activity was also observed with variants showing reduced or depleted binding. Mannose-binding CBAs inhibit SARS-CoV-2 infection showing broad neutralizing activity CBAs interact with the spike protein rather than with ACE2 receptors The non-toxic CBA IDS060 binds to the spike RBD and inhibits binding of RBD to hACE2
Collapse
Affiliation(s)
- Oscar Francesconi
- Dipartimento di Chimica, DICUS, University of Florence, Florence, Italy
| | - Lorena Donnici
- Fondazione INGM - Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Marco Fragai
- Dipartimento di Chimica, DICUS, University of Florence, Florence, Italy.,CERM, University of Florence, Florence, Italy
| | - Elisa Pesce
- Fondazione INGM - Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mauro Bombaci
- Fondazione INGM - Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandra Fasciani
- Fondazione INGM - Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Lara Manganaro
- Fondazione INGM - Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Milan, Italy
| | - Matteo Conti
- Fondazione INGM - Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Renata Grifantini
- Fondazione INGM - Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Raffaele De Francesco
- Fondazione INGM - Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milan, Milan, Italy
| | - Cristina Nativi
- Dipartimento di Chimica, DICUS, University of Florence, Florence, Italy
| | | |
Collapse
|
7
|
Chen D, Zhang X, Yang J, Liao X, Yang B, Gao C. Codelivery of satraplatin and aminopyrrolic receptor with Pluronic F127-based polyaniline nanoparticles with NIR induced release for combined chemotherapy. NANOTECHNOLOGY 2021; 32:475103. [PMID: 34388738 DOI: 10.1088/1361-6528/ac1d78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The acquired drug resistance of the platinum-based drug is a main obstacle in cancer therapy. Herein, an aminopyrrolic receptor 1 was synthesized to sensitize satraplatin for overcoming the drug resistance as well as improving tumor targeted ability. Thus, Pluronic F127-based polyaniline nanoparticles were designed to co-deliver satraplatin and aminopyrrolic receptor 1, which could control the drug release with the Near Infrared laser irradiation (808 nm) due to the polyaniline mediated photothermal conversion. Biological evaluation shows prepared nanoparticles (Pt-ARNPs) exhibited more effective cytotoxicity (IC50 = 2.7μM) against the tested cancer cell lines under laser irradiation, compared with free satraplatin or treatment without Near-infrared radiation. Moreover, Pt-ARNPs showed comparable cytotoxicity against A549 and A549/cis cells, implying that the combination of satraplatin and aminopyrrolic receptor 1 with nano carrier might be a promising strategy to reduce platinum resistance and improve therapeutic effect in cancer therapy.
Collapse
Affiliation(s)
- Dalei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Xinzhong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| |
Collapse
|
8
|
Ciaco S, Humbert N, Real E, Boudier C, Francesconi O, Roelens S, Nativi C, Seguin-Devaux C, Mori M, Mély Y. A Class of Potent Inhibitors of the HIV-1 Nucleocapsid Protein Based on Aminopyrrolic Scaffolds. ACS Med Chem Lett 2020; 11:698-705. [PMID: 32435373 DOI: 10.1021/acsmedchemlett.9b00558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
The HIV-1 nucleocapsid protein 7 (NC) is a potential target for effective antiretroviral therapy due to its central role in virus replication, mainly linked to nucleic acid (NA) chaperone activity, and low susceptibility to drug resistance. By screening a compounds library, we identified the aminopyrrolic compound CN14_17, a known carbohydrate binding agent, that inhibits the NC chaperone activity in the low micromolar range. Different from most of available NC inhibitors, CN14_17 fully prevents the NC-induced annealing of complementary NA sequences. Using fluorescence assays and isothermal titration calorimetry, we found that CN14_17 competes with NC for the binding to NAs, preferentially targeting single-stranded sequences. Molecular dynamics simulations confirmed that binding to cTAR occurs preferably within the guanosine-rich single stranded sequence. Finally, CN14_17 exhibited antiretroviral activity in the low micromolar range, although with a moderate therapeutic index. Overall, CN14_17 might be the progenitor of a new promising class of NC inhibitors.
Collapse
Affiliation(s)
- Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Eléonore Real
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Oscar Francesconi
- Dipartimento di Chimica “Ugo Schiff” and INSTM, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Stefano Roelens
- Dipartimento di Chimica “Ugo Schiff” and INSTM, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Cristina Nativi
- Dipartimento di Chimica “Ugo Schiff” and INSTM, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
9
|
Malla JA, Umesh RM, Yousf S, Mane S, Sharma S, Lahiri M, Talukdar P. A Glutathione Activatable Ion Channel Induces Apoptosis in Cancer Cells by Depleting Intracellular Glutathione Levels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Rintu M. Umesh
- Department of Biology Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Saleem Yousf
- Department of Chemistry Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Shrunal Mane
- Department of Biology Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Shilpy Sharma
- Department of Biotechnology Savitribai Phule Pune University (Formerly University of Pune) Pune Maharashtra 411007 India
| | - Mayurika Lahiri
- Department of Biology Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
10
|
Malla JA, Umesh RM, Yousf S, Mane S, Sharma S, Lahiri M, Talukdar P. A Glutathione Activatable Ion Channel Induces Apoptosis in Cancer Cells by Depleting Intracellular Glutathione Levels. Angew Chem Int Ed Engl 2020; 59:7944-7952. [PMID: 32048775 DOI: 10.1002/anie.202000961] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/11/2020] [Indexed: 01/30/2023]
Abstract
Cancer cells use elevated glutathione (GSH) levels as an inner line of defense to evade apoptosis and develop drug resistance. In this study, we describe a novel 2,4-nitrobenzenesulfonyl (DNS) protected 2-hydroxyisophthalamide system that exploits GSH for its activation into free 2-hydroxyisophthalamide forming supramolecular M+ /Cl- channels. Better permeation of the DNS protected compound into MCF-7 cells compared to the free 2-hydroxyisophthalamide and GSH-activatable ion transport resulted in higher cytotoxicity, which was associated with increased oxidative stress that further reduced the intracellular GSH levels and altered mitochondrial membrane permeability leading to the induction of the intrinsic apoptosis pathway. The GSH-activatable transport-mediated cell death was further validated in rat insulinoma cells (INS-1E); wherein the intracellular GSH levels showed a direct correlation to the resulting cytotoxicity. Lastly, the active compound was found to restrict the growth and proliferation of 3D spheroids of MCF-7 cells with efficiency similar to that of the anticancer drug doxorubicin.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Rintu M Umesh
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Shrunal Mane
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
11
|
Nakagawa Y. Paving the Way for Practical Use of Sugar-Binding Natural Products as Lectin Mimics in Glycobiological Research. Chembiochem 2020; 21:1567-1572. [PMID: 32012428 DOI: 10.1002/cbic.201900781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Pradimicins (PRMs) constitute an exceptional class of natural products that show Ca2+ -dependent recognition of d-mannose (Man). In addition to therapeutic uses as antifungal drugs, the application of PRMs as lectin mimics for glycobiological research has been attracting considerable interest, since the emerging biological roles of Man-containing glycans have been highlighted. However, only a few attempts have been made to use PRMs for glycobiological purposes. The limited use of PRMs is primarily due to the early assumption that the readily modifiable carboxyl group of PRMs is involved in Ca2+ binding, and thus, not available to prepare research tools. Recently, this assumption has been disproved by structural elucidation of the Ca2+ complex of PRMs, which paves the way for designing carboxyl group modified derivatives of PRMs for research use. This article outlines studies related to Ca2+ -mediated Man binding of PRMs and discusses their application for glycobiology.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
12
|
Malla JA, Umesh RM, Vijay A, Mukherjee A, Lahiri M, Talukdar P. Apoptosis-inducing activity of a fluorescent barrel-rosette M +/Cl - channel. Chem Sci 2020; 11:2420-2428. [PMID: 34084406 PMCID: PMC8157539 DOI: 10.1039/c9sc06520b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
Synthetic transmembrane ion transport systems are emerging as new tools for anticancer therapy. Here, a series of 2-hydroxy-N 1,N 3-diarylisophthalamide-based fluorescent ion channel-forming compounds are reported. Ion transport studies across large unilamellar vesicles confirmed that the compound with two 3,5-bis(trifluoromethyl)phenyl arms is the most efficient transporter among the series and it facilitates M+/Cl- symport. The compound formed supramolecular ion channels with a single-channel conductance of 100 ± 2 pS, a diameter of 5.06 ± 0.16 Å and a permeability ratio, P Cl- /P K+ , of 8.29 ± 1. The molecular dynamics simulations of the proposed M2.11 channel (i.e. 11 coaxial layers of a dimeric rosette) with K+ and Cl- in the preequilibrated POPC lipid bilayer with water molecules illustrated various aspects of channel formation and ion permeation. Cell viability assay with the designed compounds indicated that cell death is being induced by the individual compounds which follow the order of their ion transport activity and chloride and cations play roles in cell death. The inherent fluorescence of the most active transporter was helpful to monitor its permeation in cells by confocal microscopy. The apoptosis-inducing activity upon perturbation of intracellular ionic homeostasis was established by monitoring mitochondrial membrane depolarization, generation of reactive oxygen species, cytochrome c release, activation of the caspase 9 pathway, and finally the uptake of the propidium iodide dye in the treated MCF7 cells.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Rintu M Umesh
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Amal Vijay
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
13
|
Nakagawa Y, Doi T, Takegoshi K, Sugahara T, Akase D, Aida M, Tsuzuki K, Watanabe Y, Tomura T, Ojika M, Igarashi Y, Hashizume D, Ito Y. Molecular Basis of Mannose Recognition by Pradimicins and their Application to Microbial Cell Surface Imaging. Cell Chem Biol 2019; 26:950-959.e8. [PMID: 31031141 DOI: 10.1016/j.chembiol.2019.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
Naturally occurring pradimicins (PRMs) show specific recognition of d-mannose (d-Man) in aqueous media, which has never been achieved by artificial small molecules. Although the Ca2+-mediated dimerization of PRMs is essential for their d-Man binding, the dimeric structure has yet to be elucidated, leaving the question open as to how PRMs recognize d-Man. Thus, we herein report the structural elucidation of the dimer by a combination of X-ray crystallography and solid-state NMR spectroscopy. Coupled with our previous knowledge regarding the d-Man binding geometry of PRMs, elucidation of the dimer allowed reliable estimation of the mode of d-Man binding. Based on the binding model, we further developed an azide-functionalized PRM derivative (PRM-Azide) with d-Man binding specificity. Notably, PRM-Azide stained Candida rugosa cells having mannans on their cell surface through conjugation with the tetramethylrhodamine fluorophore. The present study provides the practical demonstration that PRMs can serve as lectin mimics for use in glycobiological studies.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Takashi Doi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - K Takegoshi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiro Sugahara
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Dai Akase
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kazue Tsuzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasunori Watanabe
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomohiko Tomura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Francesconi O, Roelens S. Biomimetic Carbohydrate‐Binding Agents (CBAs): Binding Affinities and Biological Activities. Chembiochem 2019; 20:1329-1346. [DOI: 10.1002/cbic.201800742] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| | - Stefano Roelens
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
15
|
Akhtar N, Saha A, Kumar V, Pradhan N, Panda S, Morla S, Kumar S, Manna D. Diphenylethylenediamine-Based Potent Anionophores: Transmembrane Chloride Ion Transport and Apoptosis Inducing Activities. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33803-33813. [PMID: 30221925 DOI: 10.1021/acsami.8b06664] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthetic anion transporters have been recognized as one of the potential therapeutic agents for the treatment of diseases including cystic fibrosis, myotonia, and epilepsy that originate due to the malfunctioning of natural Cl- ion transport systems. Recent studies showed that the synthetic Cl- ion transporters can also disrupt cellular ion-homeostasis and induce apoptosis in cancer cell lines, leading to a revived attention for synthetic Cl- ion transporters. Herein, we report the development of conformationally controlled 1,2-diphenylethylenediamine-based bis(thiourea) derivatives as a new class of selective Cl- ion carrier. The strong Cl- ion binding properties ( Kd = 3.87-6.66 mM) of the bis(thiourea) derivatives of diamine-based compounds correlate well with their transmembrane anion transport activities (EC50 = 2.09-4.15 nM). The transport of Cl- ions via Cl-/NO3- antiport mechanism was confirmed for the most active molecule. Perturbation of Cl- ion homeostasis by this anion carrier induces cell death by promoting the caspase-mediated intrinsic pathway of apoptosis.
Collapse
|
16
|
Juanes M, Lostalé-Seijo I, Granja JR, Montenegro J. Supramolecular Recognition and Selective Protein Uptake by Peptide Hybrids. Chemistry 2018; 24:10689-10698. [DOI: 10.1002/chem.201800706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
17
|
Francesconi O, Martinucci M, Badii L, Nativi C, Roelens S. A Biomimetic Synthetic Receptor Selectively Recognising Fucose in Water. Chemistry 2018; 24:6828-6836. [DOI: 10.1002/chem.201800390] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Marco Martinucci
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Lorenzo Badii
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Cristina Nativi
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Stefano Roelens
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
18
|
Yang L, Hu Z, Luo J, Tang C, Zhang S, Ning W, Dong C, Huang J, Liu X, Zhou HB. Dual functional small molecule fluorescent probes for image-guided estrogen receptor-specific targeting coupled potent antiproliferative potency for breast cancer therapy. Bioorg Med Chem 2017; 25:3531-3539. [DOI: 10.1016/j.bmc.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022]
|
19
|
Hyun JY, Park CW, Liu Y, Kwon D, Park SH, Park S, Pai J, Shin I. Carbohydrate Analogue Microarrays for Identification of Lectin-Selective Ligands. Chembiochem 2017; 18:1077-1082. [PMID: 28422419 DOI: 10.1002/cbic.201700091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 01/15/2023]
Abstract
Fifty-five mono- and disaccharide analogues were prepared and used for the construction of microarrays to uncover lectin-selective ligands. The microarray study showed that two disaccharide analogues, 28' and 44', selectively bind to Solanum tuberosum lectin (STL) and wheat germ agglutinin (WGA), respectively. Cell studies indicated that 28' and 44' selectively block the binding of STL and WGA to mammalian cells, unlike the natural ligand LacNAc, which suppresses binding of both STL and WGA to cells.
Collapse
Affiliation(s)
- Ji Young Hyun
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Cheol Wan Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Yanna Liu
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Daeun Kwon
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Seong-Hyun Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Sungjin Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Jaeyoung Pai
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
20
|
Saha T, Gautam A, Mukherjee A, Lahiri M, Talukdar P. Chloride Transport through Supramolecular Barrel-Rosette Ion Channels: Lipophilic Control and Apoptosis-Inducing Activity. J Am Chem Soc 2016; 138:16443-16451. [DOI: 10.1021/jacs.6b10379] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tanmoy Saha
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Amitosh Gautam
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Arnab Mukherjee
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Mayurika Lahiri
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Pinaki Talukdar
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
21
|
Saha T, Hossain MS, Saha D, Lahiri M, Talukdar P. Chloride-Mediated Apoptosis-Inducing Activity of Bis(sulfonamide) Anionophores. J Am Chem Soc 2016; 138:7558-67. [DOI: 10.1021/jacs.6b01723] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tanmoy Saha
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| | - Munshi Sahid Hossain
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| | - Debasis Saha
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| |
Collapse
|
22
|
Share AI, Patel K, Nativi C, Cho EJ, Francesconi O, Busschaert N, Gale PA, Roelens S, Sessler JL. Chloride anion transporters inhibit growth of methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Chem Commun (Camb) 2016; 52:7560-3. [PMID: 27223254 DOI: 10.1039/c6cc03645g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of aminopyrrolic receptors were tested as anion transporters using POPC liposome model membranes. Many were found to be effective Cl(-) transporters and to inhibit clinical strains of Staphylococcus aureus growth in vitro. The best transporters proved effective against the methicillin-resistant Staphylococcus aureus (MRSA) strains, Mu50 and HP1173. Tris-thiourea tren-based chloride transporters were also shown to inhibit the growth of S. aureus in vitro.
Collapse
Affiliation(s)
- Andrew I Share
- Department of Chemistry, The University of Texas, Austin, TX 78712-1224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|