1
|
Wang G, Li Q, Liu S, Li M, Liu B, Zhao T, Liu B, Chen Z. An injectable decellularized extracellular matrix hydrogel with cortical neuron-derived exosomes enhances tissue repair following traumatic spinal cord injury. Mater Today Bio 2024; 28:101250. [PMID: 39318371 PMCID: PMC11421349 DOI: 10.1016/j.mtbio.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/11/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Traumatic spinal cord injury (SCI), known for its limited intrinsic regeneration capacity, often results in considerable neurological impairment. Studies suggest that therapeutic techniques utilizing exosomes (Exo) to promote tissue regeneration and modulate immune responses are promising for SCI treatment. However, combining exosome therapy with biomaterials for SCI treatment is not very effective. This study developed an adhesive hydrogel using exosomes secreted by cortical neurons derived from human induced pluripotent stem cells (iPSCs) and decellularized extracellular matrix (dECM) from human umbilical cord mesenchymal stem cells (hUCMSCs) to enhance motor function recovery post-SCI. In vitro assessments demonstrated the excellent cytocompatibility of the dECM hydrogel. Additionally, the Exo-dECM hydrogel facilitated the polarization of early M2 macrophages, reduced neuronal apoptosis, and established a pro-regenerative microenvironment in a rodent SCI model. Subsequent analyses revealed significant activation of endogenous neural stem cells and promotion of axon regeneration and remyelination at eight weeks post-surgery. The Exo-dECM hydrogel also promoted the functional recovery and preservation of urinary tissue in SCI-afflicted rats. These findings highlighted that the Exo-dECM hydrogel is a promising therapeutic strategy for treating SCI.
Collapse
Affiliation(s)
- Gang Wang
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Qian Li
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Sumei Liu
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Mo Li
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Baoguo Liu
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Tianyao Zhao
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Bochao Liu
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
2
|
Huang X, Dong W, Luo X, Xu L, Wang Y. Target Screen of Anti-Hyperuricemia Compounds from Cortex Fraxini In Vivo Based on ABCG2 and Bioaffinity Ultrafiltration Mass Spectrometry. Molecules 2023; 28:7896. [PMID: 38067624 PMCID: PMC10708028 DOI: 10.3390/molecules28237896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The ATP-binding cassette (ABC) transporter ABCG2 is a significant urate transporter with a high capacity, and it plays a crucial role in the development of hyperuricemia and gout. Therefore, it has the potential to be targeted for therapeutic interventions. Cortex Fraxini, a traditional Chinese medicine (TCM), has been found to possess anti-hyperuricemia properties. However, the specific constituents of Cortex Fraxini responsible for this effect are still unknown, particularly the compound that is responsible for reducing uric acid levels in vivo. In this study, we propose a target screening protocol utilizing bio-affinity ultrafiltration mass spectrometry (BA-UF-MS) to expediently ascertain ABCG2 ligands from the plasma of rats administered with Cortex Fraxini. Our screening protocol successfully identified fraxin as a potential ligand that interacts with ABCG2 when it functions as the target protein. Subsequent investigations substantiated fraxin as an activated ligand of ABCG2. These findings imply that fraxin exhibits promise as a drug candidate for the treatment of hyperuricemia. Furthermore, the utilization of BA-UF-MS demonstrates its efficacy as a valuable methodology for identifying hit compounds that exhibit binding affinity towards ABCG2 within TCMs.
Collapse
Affiliation(s)
| | | | | | - Lu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China; (X.H.); (W.D.); (X.L.)
| | - Yinan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China; (X.H.); (W.D.); (X.L.)
| |
Collapse
|
3
|
Zhang J, Wang Y, Shu X, Deng H, Wu F, He J. Magnetic chitosan hydrogel induces neuronal differentiation of neural stem cells by activating RAS-dependent signal cascade. Carbohydr Polym 2023; 314:120918. [PMID: 37173006 DOI: 10.1016/j.carbpol.2023.120918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Our aim was to modulate magnetic cues to influence the differentiation of neural stem cell (NSC) into neuron during nerve repair and to explore corresponding mechanisms. Here, a magnetic hydrogel composed of chitosan matrices and magnetic nanoparticles (MNPs) with different content was prepared as the magnetic-stimulation platform to apply intrinsically-present magnetic cue and externally-applied magnetic field to NSC grown on the hydrogel. The MNP content had regulatory effects on neuronal differentiation and the MNPs-50 samples exhibited the best neuronal potential and appropriate biocompatibility in vitro, as well as accelerated the subsequent neuronal regeneration in vivo. Remarkably, the use of proteomics analysis parsed the underlying mechanism of magnetic cue-mediated neuronal differentiation form the perspective of protein corona and intracellular signal transduction. The intrinsically-present magnetic cues in hydrogel contributed to the activation of intracellular RAS-dependent signal cascades, thus facilitating neuronal differentiation. Magnetic cue-dependent changes in NSCs benefited from the upregulation of adsorbed proteins related to "neuronal differentiation", "cell-cell interaction", "receptor", "protein activation cascade", and "protein kinase activity" in the protein corona. Additionally, magnetic hydrogel acted cooperatively with the exterior magnetic field, showing further improving neurogenesis. The findings clarified the mechanism for magnetic cue-mediated neuronal differentiation, coupling protein corona and intracellular signal transduction.
Collapse
Affiliation(s)
- Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xuedong Shu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
4
|
Garcia J, Eichwald J, Zesiger J, Beng TK. Leveraging the 1,3-azadiene-anhydride reaction for the synthesis of functionalized piperidines bearing up to five contiguous stereocenters. RSC Adv 2021; 12:309-318. [PMID: 35424477 PMCID: PMC8978715 DOI: 10.1039/d1ra07390g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
A modular and scalable strategy, which remodels 3-methylglutaric anhydride to 2-oxopiperidines bearing at least three contiguous stereocenters is described. The approach relies on the chemoselective and stereocontrolled annulation of 1,3-azadienes with the anhydride component. The resulting acid-tethered allylic 2-oxopiperidines are then engaged in several selective fragment growth processes, including catalytic denitrative alkenylation, halolactonization, and Vilsmeier-Haack functionalization.
Collapse
Affiliation(s)
- Jorge Garcia
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jayme Zesiger
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
5
|
Screening study of cancer-related cellular signals from microbial natural products. J Antibiot (Tokyo) 2021; 74:629-638. [PMID: 34193986 DOI: 10.1038/s41429-021-00434-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
To identify bioactive natural products from various natural resources, such as plants and microorganisms, we investigated programs to screen for compounds that affect several cancer-related cellular signaling pathways, such as BMI1, TRAIL, and Wnt. This review summarizes the results of our recent studies, particularly those involving natural products isolated from microbial resources, such as actinomycetes, obtained from soil samples collected primarily around Chiba, Japan.
Collapse
|
6
|
Abstract
Natural products are very attractive for development of medicine. Their structure and bioactivities are often beyond human knowledge and imagination. We have developed isolation methods for target protein-oriented natural products so as quickly to discover bioactive compounds from natural resources. This review summarizes our recent results including protein beads methods for neural stem cells differentiation activators and new cancer drug candidates. Syntheses of isolated compounds are described. We also developed protein plate method for identification of protein-protein interaction inhibitors. Because protein binding ability is tightly related to bioactivity, protein-based natural products isolation is a powerful means to find new candidate medicines.
Collapse
|
7
|
Arai MA, Ishibashi M. Target Protein-Oriented Isolations for Chemical Biology based on Natural Products. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Midori A. Arai
- Department of Biosciences & Informatics, Faculty of Science and Technology, Keio University
| | | |
Collapse
|
8
|
Total synthesis of lindbladione, a Hes1 dimerization inhibitor and neural stem cell activator isolated from Lindbladia tubulina. Sci Rep 2020; 10:21433. [PMID: 33293619 PMCID: PMC7722756 DOI: 10.1038/s41598-020-78524-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Lindbladione (1) is a neural stem cell differentiation activator isolated from Lindbladia tubulina by our group. Hes1 dimerization inhibitory activity of lindbladione (1) was discovered using our original fluorescent Hes1 dimer microplate assay. We also found that lindbladione (1) accelerates the differentiation of neural stem cells. We conducted the first total synthesis of lindbladione (1) via Heck reaction of 1-hexene-3-one 7 with iodinated naphthoquinone 12, which was provided by Friedel–Crafts acylation followed by Claisen condensation, in the presence of Pd (II) acetate. Careful deprotection of the benzyl groups of 13 successively provided lindbladione (1). Synthesized lindbladione (1) exhibited potent Hes1 dimer inhibition (IC50 of 2.7 μM) in our previously developed fluorescent Hes1 dimer microplate assay. Synthesized lindbladione (1) also accelerated the differentiation of C17.2 mouse neural stem cells into neurons dose dependently, increasing the number of neurons by 59% (2.5 μM) and 112% (10 μM) compared to the control. These activities are comparable to those of naturally occurring lindbladione (1) isolated from L. tublina.
Collapse
|
9
|
Alvarez R, de Lera AR. Natural polyenic macrolactams and polycyclic derivatives generated by transannular pericyclic reactions: optimized biogenesis challenging chemical synthesis. Nat Prod Rep 2020; 38:1136-1220. [PMID: 33283831 DOI: 10.1039/d0np00050g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering from 1992 to the end of 2020-11-20.Genetically-encoded polyenic macrolactams, which are constructed by Nature using hybrid polyketide synthase/nonribosomal peptide synthase (PKSs/NRPSs) assembly lines, are part of the large collection of natural products isolated from bacteria. Activation of cryptic (i.e., silent) gene clusters in these microorganisms has more recently allowed to generate and eventually isolate additional members of the family. Having two unsaturated fragments separated by short saturated chains, the primary macrolactam is posited to undergo transannular reactions and further rearrangements thus leading to the generation of a structurally diverse collection of polycyclic (natural) products and oxidized derivatives. The review will cover the challenges that scientists face on the isolation of these unstable compounds from the cultures of the producing microorganisms, their structural characterization, biological activities, optimized biogenetic routes, as well as the skeletal rearrangements of the primary structures of the natural macrolactams derived from pericyclic reactions of the polyenic fragments. The efforts of the synthetic chemists to emulate Nature on the successful generation and structural confirmation of these natural products will also be reported.
Collapse
Affiliation(s)
- Rosana Alvarez
- Department of Organic Chemistry and Center for Biomedical Research (CINBIO), IBIV, Universidade de Vigo, 36310 Vigo, Spain.
| | | |
Collapse
|
10
|
Matsumori T, Kodama Y, Takai A, Shiokawa M, Nishikawa Y, Matsumoto T, Takeda H, Marui S, Okada H, Hirano T, Kuwada T, Sogabe Y, Kakiuchi N, Tomono T, Mima A, Morita T, Ueda T, Tsuda M, Yamauchi Y, Kuriyama K, Sakuma Y, Ota Y, Maruno T, Uza N, Marusawa H, Kageyama R, Chiba T, Seno H. Hes1 Is Essential in Proliferating Ductal Cell-Mediated Development of Intrahepatic Cholangiocarcinoma. Cancer Res 2020; 80:5305-5316. [PMID: 33067264 DOI: 10.1158/0008-5472.can-20-1161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is frequently driven by aberrant KRAS activation and develops in the liver with chronic inflammation. Although the Notch signaling pathway is critically involved in ICC development, detailed mechanisms of Notch-driven ICC development are still unknown. Here, we use mice whose Notch signaling is genetically engineered to show that the Notch signaling pathway, specifically the Notch/Hes1 axis, plays an essential role in expanding ductular cells in the liver with chronic inflammation or oncogenic Kras activation. Activation of Notch1 enhanced the development of proliferating ductal cells (PDC) in injured livers, while depletion of Hes1 led to suppression. In correlation with PDC expansion, ICC development was also regulated by the Notch/Hes1 axis and suppressed by Hes1 depletion. Lineage-tracing experiments using EpcamcreERT2 mice further confirmed that Hes1 plays a critical role in the induction of PDC and that ICC could originate from PDC. Analysis of human ICC specimens showed PDC in nonneoplastic background tissues, confirming HES1 expression in both PDC and ICC tumor cells. Our findings provide novel direct experimental evidence that Hes1 plays an essential role in the development of ICC via PDC. SIGNIFICANCE: This study contributes to the identification of the cells of origin that initiate ICC and suggests that HES1 may represent a therapeutic target in ICC.
Collapse
Affiliation(s)
- Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Department of Gastroenterology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Matsumoto
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Okada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Hirano
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology, Japanese Red Cross Hospital Osaka, Osaka, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-Ku, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Kansai Electric Power Hospital, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Luo S, Guo L, Sheng C, Zhao Y, Chen L, Li C, Jiang Z, Tian H. Rapid identification and isolation of neuraminidase inhibitors from mockstrawberry ( Duchesnea indica Andr.) based on ligand fishing combined with HR-ESI-Q-TOF-MS. Acta Pharm Sin B 2020; 10:1846-1855. [PMID: 33163339 PMCID: PMC7606179 DOI: 10.1016/j.apsb.2020.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
Neuraminidase inhibitors (NAIs) are the mainstay antiviral drugs against influenza infection. In this study, a ligand fishing protocol was developed to screen NAIs using neuraminidase immobilized magnetic beads (NA-MB). After verifying the feasibility of NA-MB with an artificial mixture including NA inhibitors and non-inhibitors, the developed ligand fishing protocol was applied to screen NAIs from the crude extracts of Duchesnea indica Andr. Twenty-four NA binding compounds were identified from the normal butanol (n-BuOH) extract of D. indica as potential NAIs by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC–Q-TOF-MS) assisted with Compound Structure Identification (CSI):FingerID, including 12 ellagitannins, 4 brevifolin derivatives, 3 ellagic acid derivatives, and 4 flavonoids. Among them, 9 compounds were isolated and tested for in vitro NA inhibitory activities against NA from Clostridium perfringens, and from oseltamivir sensitive and resistant influenza A virus strains. The results indicate that compound B23 has the NA inhibitory activities in both the oseltamivir sensitive and resistant viral NA, with half maximal inhibitory concentration (IC50) values of 197.9 and 125.4 μmol/L, respectively. Moreover, B23 can obviously reduce the replication of oseltamivir sensitive and resistant viruses in Madin–Darby canine kidney (MDCK) cells at the concentrations of 40 and 200 μmol/L. An efficient ligand fishing protocol was developed to rapidly screen the neuraminidase inhibitors from natural sources. 24 potential neuraminidase inhibitors were identified from Duchesnea indica as potential NAIs by HPLC-Q-TOF-MS. One compound can inhibit neuraminidase activities in both the oseltamivir sensitive and resistant virus strains.
Collapse
|
12
|
Tian J, Yang Z, Liang X, Liu N, Hu C, Tu X, Li X, Wang X. Borane‐Catalyzed Chemoselective and Enantioselective Reduction of 2‐Vinyl‐Substituted Pyridines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jun‐Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Zhao‐Ying Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xin‐Shen Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ning Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Chen‐Yu Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xian‐Shuang Tu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiang Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
13
|
Tian J, Yang Z, Liang X, Liu N, Hu C, Tu X, Li X, Wang X. Borane‐Catalyzed Chemoselective and Enantioselective Reduction of 2‐Vinyl‐Substituted Pyridines. Angew Chem Int Ed Engl 2020; 59:18452-18456. [DOI: 10.1002/anie.202007352] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Jun‐Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Zhao‐Ying Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xin‐Shen Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ning Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Chen‐Yu Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xian‐Shuang Tu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiang Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
14
|
Isolation and evaluation of cardenolides from Lansium domesticum as Notch inhibitors. J Nat Med 2020; 74:758-766. [PMID: 32648094 DOI: 10.1007/s11418-020-01432-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Since Notch signaling plays important roles in cell proliferation and differentiation, aberrant activation of this signaling contributes to cancer progression. In neural stem cells, Notch signaling inhibits differentiation by activating HES1 expression. Therefore, Notch signaling inhibitors may be candidates for new anticancer drugs or have applications in neural regenerative medicine. In this study, six naturally occurring Notch inhibitors were isolated from the methanol (MeOH) extract of Lansium domesticum using our novel cell-based assay. Hongherin (2), a cardiac glycoside, demonstrated potent Notch inhibitory activity with an IC50 of 0.62 μM and was found to be cytotoxic in HPB-ALL human T cell acute lymphoblastic leukemia cells. Hongherin (2) also induced the differentiation of C17.2 neural stem cells to neurons, causing a 65% increase in differentiation compared to the control. Mechanistically, hongherin (2) reduced the amount of Notch1 (full length) and mastermind-like protein (MAML). This indicates that hongherin (2) inhibits Notch signaling through a dual mechanism involving the reduction of both Notch1 and MAML protein levels.
Collapse
|
15
|
Tandon A, Singh SJ, Gupta M, Singh N, Shankar J, Arjaria N, Goyal S, Chaturvedi RK. Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122052. [PMID: 32151947 DOI: 10.1016/j.jhazmat.2020.122052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
CNS myelination process involves proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Defective myelination causes onset of neurological disorders. Bisphenol-A (BPA), a component of plastic items, exerts adverse effects on human health. Our previous studies indicated that BPA impairs neurogenesis and myelination process stimulating cognitive dysfunctions. But, the underlying mechanism(s) of BPA induced de-myelination and probable neuroprotection by curcumin remains elusive. We found that curcumin protected BPA mediated adverse effects on oligosphere growth kinetics. Curcumin significantly improved proliferation and differentiation of OPCs upon BPA exposure both in-vitro and in-vivo. Curcumin enhanced the mRNA expression and protein levels of myelination markers in BPA treated rat hippocampus. Curcumin improved myelination potential via increasing β-III tubulin-/MBP+ cells (neuron-oligodendrocyte co-culture) and augmented fluoromyelin intensity and neurofilament/MBP+ neurons in vivo. In silico docking studies suggested Notch pathway genes (Notch-1, Hes-1 and Mib-1) as potential targets of BPA and curcumin. Curcumin reversed BPA mediated myelination inhibition via increasing the Notch pathway gene expression. Genetic and pharmacological Notch pathway inhibition by DAPT and Notch-1 siRNA exhibited decreased curcumin mediated neuroprotection. Curcumin improved BPA mediated myelin sheath degeneration and neurobehavioral impairments. Altogether, results suggest that curcumin protected BPA induced de-myelination and behavioural deficits through Notch pathway activation.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Manjeet Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India
| | - Nivedita Singh
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Jai Shankar
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India.
| |
Collapse
|
16
|
Arai MA, Morita K, Kawano H, Makita Y, Hashimoto M, Suganami A, Tamura Y, Sadhu SK, Ahmed F, Ishibashi M. Target protein-oriented isolation of Hes1 dimer inhibitors using protein based methods. Sci Rep 2020; 10:1381. [PMID: 31992824 PMCID: PMC6987128 DOI: 10.1038/s41598-020-58451-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Natural products isolation using protein based methods is an attractive for obtaining bioactive compounds. To discover neural stem cell (NSC) differentiation activators, we isolated eight inhibitors of Hes1 dimer formation from Psidium guajava using the Hes1-Hes1 interaction fluorescent plate assay and one inhibitor from Terminalia chebula using the Hes1-immobilized beads method. Of the isolated compounds, gallic acid (8) and 4-O-(4”-O-galloyl-α-L-rhamnopyranosyl)ellagic acid (11) showed potent Hes1 dimer formation inhibitory activity, with IC50 values of 10.3 and 2.53 μM, respectively. Compound 11 accelerated the differentiation activity of C17.2 NSC cells dose dependently, increasing the number of neurons with a 125% increase (5 μM) compared to the control.
Collapse
Affiliation(s)
- Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Kaori Morita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Haruka Kawano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yuna Makita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Manami Hashimoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Akiko Suganami
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yutaka Tamura
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Samir K Sadhu
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
17
|
Arai MA, Ochi F, Makita Y, Chiba T, Higashi K, Suganami A, Tamura Y, Toida T, Iwama A, Sadhu SK, Ahmed F, Ishibashi M. GLI1 Inhibitors Identified by Target Protein Oriented Natural Products Isolation (TPO-NAPI) with Hedgehog Inhibition. ACS Chem Biol 2018; 13:2551-2559. [PMID: 30160475 DOI: 10.1021/acschembio.8b00492] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This report describes the development of a target-protein-oriented natural-products-isolation (TPO-NAPI) method for Hedgehog inhibitors and the direct GLI1 inhibitor, 5'- O-methyl-3-hydroxyflemingin A (3), which inhibited hedgehog (Hh) signal transduction and diminished characteristics of cancer stem cells. Eight natural products (including three newly described products) that directly bind to GLI1 were rapidly obtained via the TPO-NAPI method developed using GLI1 protein-immobilized beads. 5'- O-Methyl-3-hydroxyflemingin A (3) inhibited Hh signaling (IC50 7.3 μM), leading to decreasing production of the Hh target proteins BCL2, PTCH1, and BMI1. 5'- O-Methyl-3-hydroxyflemingin A (3) was cytotoxic to Hh-related cancer cells. CD experiments revealed that 5'- O-methyl-3-hydroxyflemingin A (3) directly bound GLI1 ( Kd = 7.7 μM). Moreover, 5'- O-methyl-3-hydroxyflemingin A (3) diminished cancer stem cell characters of Huh7 such as sphere formation and production of the cancer stem cell marker EpCAM. These results suggest that Hh inhibitors can efficiently suppress the activity of cancer stem cells.
Collapse
Affiliation(s)
- Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Fumie Ochi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshinori Makita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Chiba
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kyohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akiko Suganami
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yutaka Tamura
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Atsushi Iwama
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- The Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Samir K. Sadhu
- Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka-1000, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
18
|
Wei Y, Pandian GN, Yu Z, Zou T, Li Y, Darokar J, Hashiya K, Bando T, Sugiyama H. Synthetic DNA-Binding Inhibitor of HES1 Alters the Notch Signaling Pathway and Induces Neuronal Differentiation. ACS OMEGA 2018; 3:3608-3616. [PMID: 30023873 PMCID: PMC6045482 DOI: 10.1021/acsomega.8b00220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 05/02/2023]
Abstract
Synthetic DNA-binding inhibitors capable of gaining precise control over neurogenesis factors could obviate the current clinical barriers associated with the use of small molecules in regenerative medicine. Here, we report the design and bioefficacy of the synthetic ligand PIP-RBPJ-1, which caused promoter-specific suppression of neurogenesis-associated HES1 and its downstream genes. Furthermore, PIP-RBPJ-1 alone altered the neural-system-associated Notch-signaling factors and remarkably induced neurogenesis with an efficiency that was comparable to that of a conventional approach.
Collapse
Affiliation(s)
- Yulei Wei
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502 Kyoto, Japan
| | - Ganesh N. Pandian
- World
Premier International Research Center, Institute for Integrated Cell-Material
Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, 606-8501 Kyoto, Japan
- E-mail: . Phone: +81-075-753-4002 (G.N.P.)
| | - Zutao Yu
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502 Kyoto, Japan
| | - Tingting Zou
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502 Kyoto, Japan
| | - Yue Li
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502 Kyoto, Japan
| | - Jayant Darokar
- Department
of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, 110-016 New Delhi, India
| | - Kaori Hashiya
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502 Kyoto, Japan
| | - Toshikazu Bando
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502 Kyoto, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502 Kyoto, Japan
- World
Premier International Research Center, Institute for Integrated Cell-Material
Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, 606-8501 Kyoto, Japan
- E-mail: . Phone: +81-075-753-4002 (H.S.)
| |
Collapse
|
19
|
Perron A, Nishikawa Y, Iwata J, Shimojo H, Takaya J, Kobayashi K, Imayoshi I, Mbenza NM, Takenoya M, Kageyama R, Kodama Y, Uesugi M. Small-molecule screening yields a compound that inhibits the cancer-associated transcription factor Hes1 via the PHB2 chaperone. J Biol Chem 2018. [PMID: 29523683 DOI: 10.1074/jbc.ra118.002316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Hes family basic helix-loop-helix transcription factor 1 (Hes1) is a downstream effector of Notch signaling and plays a crucial role in orchestrating developmental processes during the embryonic stage. However, its aberrant signaling in adulthood is linked to the pathogenesis of cancer. In the present study, we report the discovery of small organic molecules (JI051 and JI130) that impair the ability of Hes1 to repress transcription. Hes1 interacts with the transcriptional corepressor transducing-like enhancer of split 1 (TLE1) via an interaction domain comprising two tryptophan residues, prompting us to search a chemical library of 1,800 small molecules enriched for indole-like π-electron-rich pharmacophores for a compound that blocks Hes1-mediated transcriptional repression. This screening identified a lead compound whose extensive chemical modification to improve potency yielded JI051, which inhibited HEK293 cell proliferation with an EC50 of 0.3 μm Unexpectedly, using immunomagnetic isolation and nanoscale LC-MS/MS, we found that JI051 does not bind TLE1 but instead interacts with prohibitin 2 (PHB2), a cancer-associated protein chaperone. We also found that JI051 stabilizes PHB2's interaction with Hes1 outside the nucleus, inducing G2/M cell-cycle arrest. Of note, JI051 dose-dependently reduced cell growth of the human pancreatic cancer cell line MIA PaCa-2, and JI130 treatment significantly reduced tumor volume in a murine pancreatic tumor xenograft model. These results suggest a previously unrecognized role for PHB2 in the regulation of Hes1 and may inform potential strategies for managing pancreatic cancer.
Collapse
Affiliation(s)
- Amelie Perron
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011
| | | | - Jun Iwata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011
| | - Hiromi Shimojo
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Junichiro Takaya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011
| | - Kumiko Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Itaru Imayoshi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Naasson M Mbenza
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011
| | - Mihoko Takenoya
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011
| | - Ryoichiro Kageyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine.
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011.
| |
Collapse
|
20
|
Arai MA, Yamaguchi Y, Ishibashi M. Total synthesis of agalloside, isolated from Aquilaria agallocha, by the 5-O-glycosylation of flavan. Org Biomol Chem 2018; 15:5025-5032. [PMID: 28569322 DOI: 10.1039/c7ob01004d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Agalloside (1) is a neural stem cell differentiation activator isolated from Aquilaria agallocha by our group using Hes1 immobilized beads. We conducted the first total synthesis of agalloside (1) via the 5-O-glycosylation of flavan 25 using glycosyl fluoride 20 in the presence of BF3·Et2O. Subsequent oxidation with DDQ to flavanone 2 and deprotection successively provided agalloside (1). This synthetic strategy holds promise for use in the synthesis of 5-O-glycosylated flavonoids. The synthesized agalloside (1) accelerated neural stem cell differentiation, which is a result comparable to that for the naturally occurring compound 1.
Collapse
Affiliation(s)
- Midori A Arai
- Department of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | | | | |
Collapse
|
21
|
Goto N, Ueo T, Fukuda A, Kawada K, Sakai Y, Miyoshi H, Taketo MM, Chiba T, Seno H. Distinct Roles of HES1 in Normal Stem Cells and Tumor Stem-like Cells of the Intestine. Cancer Res 2017; 77:3442-3454. [PMID: 28536281 DOI: 10.1158/0008-5472.can-16-3192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/17/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
|
22
|
Arai MA, Tanaka M, Tanouchi K, Ishikawa N, Ahmed F, Sadhu SK, Ishibashi M. Hes1-Binding Compounds Isolated by Target Protein Oriented Natural Products Isolation (TPO-NAPI). JOURNAL OF NATURAL PRODUCTS 2017; 80:538-543. [PMID: 28191975 DOI: 10.1021/acs.jnatprod.6b01072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hairy and enhancer of split 1 (Hes1) is a transcription factor that acts in neural stem cells to inhibit differentiation. We recently developed target protein oriented natural products isolation (TPO-NAPI) using Hes1-immobilized beads to identify activators of neural stem cells. Isomicromonolactam (1), staurosporin (2), and linarin (3) were isolated as Hes1-binding compounds using the TPO-NAPI method. Of these, compound 1 enhanced neural stem cell differentiation. Using truncated Hes1 proteins, the binding region of Hes1 for 1 was estimated to be in the C-terminal half that includes a TLE/Grg binding site. The differentiation-promoting activity of inohanamine (4) is also reported.
Collapse
Affiliation(s)
- Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mitsuha Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kana Tanouchi
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Naoki Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka , Dhaka1000, Bangladesh
| | - Samir K Sadhu
- Pharmacy Discipline, Khulna University , Khulna 9208, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
23
|
Fujita K, Sugiyama R, Nishimura S, Ishikawa N, Arai MA, Ishibashi M, Kakeya H. Stereochemical Assignment and Biological Evaluation of BE-14106 Unveils the Importance of One Acetate Unit for the Antifungal Activity of Polyene Macrolactams. JOURNAL OF NATURAL PRODUCTS 2016; 79:1877-1880. [PMID: 27331864 DOI: 10.1021/acs.jnatprod.6b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Heronamides are a class of potent antifungal metabolites produced by marine-derived actinomycetes. The number of hydroxy groups and the stereochemistry of the two hydroxylated methine carbons are important for the activity of heronamide C, whereas the effect of the hydrocarbon chains is not known. In this study, the stereochemistry and the biological activity of BE-14106, another member of the heronamide class of antibiotics, isolated from an actinomycete Actinoalloteichus cyanogriseus IFM 11549 was investigated. Spectroscopic analysis coupled with photo- and O2-induced conversion revealed that BE-14106 and the heronamides had the same stereochemistry. BE-14106 showed potent growth inhibition against fission yeast cells with an MIC value of 0.50 μM (0.21 μg/mL), being 4 times less potent than heronamide C, which revealed the importance of the structure of the hydrocarbon tail for the activity.
Collapse
Affiliation(s)
- Kohei Fujita
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryosuke Sugiyama
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoki Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Abdelfattah MS, Arai MA, Ishibashi M. Bioactive Secondary Metabolites with Unique Aromatic and Heterocyclic Structures Obtained from Terrestrial Actinomycetes Species. Chem Pharm Bull (Tokyo) 2016; 64:668-75. [DOI: 10.1248/cpb.c16-00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mohamed S. Abdelfattah
- Graduate School of Pharmaceutical Sciences, Chiba University
- Chemistry Department, Faculty of Science,
Helwan University
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | |
Collapse
|