1
|
Shikari A, Chandra Pan S. Iridium/Acid-Dual Catalyzed Enantioselective Intramolecular Allylic Dearomatization Reaction of Allylic Alcohol Tethered α- and β-Naphthols. Chemistry 2025; 31:e202403664. [PMID: 39573944 DOI: 10.1002/chem.202403664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
The first catalytic enantioselective intramolecular allylic dearomatization of allylic alcohol tethered α- and β-naphthols has been developed with iridium/acid-dual catalysis. A wide range of polycyclic spiroketones containing vicinal tertiary and quaternary carbon stereocenters were readily prepared in good to high yields with high diastereo- and moderate to excellent enantioselectivities. An unusual anti-Markovnikov Wacker oxidation has also been shown in synthetic transformations.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
2
|
Shikari A, Sharma M, Bhattacharyya K, Pan SC. Organocatalytic Dearomative Spirocyclization Reaction of Enone-Tethered α-and β-Naphthols and Dearomatization Reaction of In Situ Generated Nitro-Olefin-Tethered α-Naphthols. J Org Chem 2024; 89:9769-9782. [PMID: 38920324 DOI: 10.1021/acs.joc.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Herein, we report a catalytic dearomative spirocyclization reaction of new substrates having aryl/alkyl enone tethered α- and β-naphthols and a dearomatization reaction of in situ generated nitro-olefin-tethered α-naphthols. The spirocarbocycles were obtained in moderate to good yields with high diastereoselectivities. A preliminary catalytic asymmetric variant was reported. A few applications such as hydrogenations and epoxidation reaction have also been demonstrated. Theoretical study has also been performed to understand high diastereoselectivity in the triethylamine catalyzed spirocyclization reaction.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Madhur Sharma
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Kalishankar Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Tang X, Song L, Van der Eycken EV. Post-Ugi Cyclizations Towards Polycyclic N-Heterocycles. CHEM REC 2023; 23:e202300095. [PMID: 37218998 DOI: 10.1002/tcr.202300095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Indexed: 05/24/2023]
Abstract
The Ugi reaction has become one of the highly explored reactions for the formation of multifunctional adducts, due to the mild reaction conditions, wide scope and high variability. By carefully selecting the starting four components, Ugi-adducts could undergo different kinds of post-transformations for the synthesis of bioactive heterocycles, natural products and macrocycles. Considering the significance of polycycles, diverse post-Ugi transformations have been developed over the years for constructing structurally novel polycycles. In this account, we summarize important efforts for the synthesis of polycyclic N-heterocycles via post-Ugi cyclizations from the Van der Eycken laboratory onwards 2016. With the aid of transition metal catalysis from gold, rhodium, silver and palladium, as well as metal-free strategies, versatile polyheterocycles are prepared with high efficiency and step-economy.
Collapse
Affiliation(s)
- Xiao Tang
- College of Science, Nanjing Forestry University, 210037, Nanjing, China
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, Jiangsu, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198, Moscow, Russia
| |
Collapse
|
4
|
Xu X, Zhong L, Feng H, Van der Eycken EV. Application of Metal-Free Dearomatization Reaction as a Sustainable Strategy to Direct Access Complex Cyclic Compounds. CHEM REC 2023; 23:e202300101. [PMID: 37132130 DOI: 10.1002/tcr.202300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Indexed: 05/04/2023]
Abstract
The highly efficient construction of complicated heterocyclic frameworks in an atom- and step-economic manner is still one of the cores of synthetic chemistry. Dearomatization reactions show the unique advantage for the construction of functionalized heterocycles and have attracted widespread attention over the past two decades. The metal-free approach has proved to be a green and sustainable paradigm for the synthesis of spirocyclic, polycyclic and heterocyclic scaffolds, which are widely present in natural products and bioactive molecules. In this review, the advances in the recent six years (2017-2023) in metal-free dearomatization reactions are highlighted. Emphasis is placed on developments in the field of organo-catalyzed dearomatization reactions, oxidative dearomatization reactions, Brønsted acid- or base-promoted dearomatization reactions, photoredox-catalyzed dearomatization reactions, and electrochemical oxidation dearomatization reactions.
Collapse
Affiliation(s)
- Xianjun Xu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Ling Zhong
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Erik V Van der Eycken
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| |
Collapse
|
5
|
Mao HL, Wang YX, Wang X, Wang HY, Hao WJ, Jiang B. Pd-Catalyzed Asymmetric Annulative Dearomatization of Phenols for Regio- and Enantioselective Synthesis of Spirocyclohexadienones. Org Lett 2023; 25:5963-5968. [PMID: 37540111 DOI: 10.1021/acs.orglett.3c02051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A palladium-catalyzed asymmetric annulative dearomatization of phenols with butene dicarbonate is reported, enabling twofold decarboxylative allylation to regioselectively produce a range of spirocyclohexadienones with 29-95% yields and 74-99% ee. A catalytic dearomative formal [4 + 2] cyclization of 1,1'-biphenyl-2,4'-diols delivered spiro[chromane-4,1'-cyclohexane]-2',5'-dien-4'-ones with high enantioselectivity, whereas enantioenriched spiro[cyclohexane-1,4'-quinoline]-2,5-dien-4-ones were generated starting from 2'-amino-[1,1'-biphenyl]-4-ols as 1,4-dinucleophiles.
Collapse
Affiliation(s)
- Hui-Lin Mao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu-Xin Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Xue Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Hai-Ying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
6
|
He J, Zhang J, Li Y, Han YB, Li M, Zhao X. Insights into Synergistic Effects of Counterion and Ligand on Diastereoselectivity Switch in Gold-Catalyzed Post-Ugi Ipso-Cyclization. ACS OMEGA 2023; 8:22637-22645. [PMID: 37396265 PMCID: PMC10308395 DOI: 10.1021/acsomega.3c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
The concept of diastereoselectivity switch in gold catalysis is investigated, which primarily depends on the effects of ligand and counterion. The origins of gold-catalyzed post-Ugi ipso-cyclization for the diastereoselective synthesis of spirocyclic pyrrol-2-one-dienone have been explored with density functional theory calculations. The reported mechanism emphasized the importance of the cooperation of ligand and counterion in diastereoselectivity switch, leading to the stereocontrolling transition states. Furthermore, the nonbonding interactions primarily between the catalyst and the substrate play a significant role in the cooperation of ligand and counterion. This work would be useful to further understand the reaction mechanism of gold-catalyzed cyclization and the effects of ligand and counterion.
Collapse
Affiliation(s)
- Jun He
- Institute
of Molecular Science and Applied Chemistry, School of Chemistry, State
Key Laboratory of Electrical Insulation and Power Equipment &
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of
Condensed Matter, Xi’an Jiaotong
University, Xi’an 710049, China
| | - Jie Zhang
- Institute
of Molecular Science and Applied Chemistry, School of Chemistry, State
Key Laboratory of Electrical Insulation and Power Equipment &
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of
Condensed Matter, Xi’an Jiaotong
University, Xi’an 710049, China
| | - Yunhe Li
- School
of Materials Science and Engineering, Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Yan-bo Han
- Institute
of Molecular Science and Applied Chemistry, School of Chemistry, State
Key Laboratory of Electrical Insulation and Power Equipment &
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of
Condensed Matter, Xi’an Jiaotong
University, Xi’an 710049, China
| | - Mengyang Li
- School
of Physics, Xidian University, Xi’an 710071, China
| | - Xiang Zhao
- Institute
of Molecular Science and Applied Chemistry, School of Chemistry, State
Key Laboratory of Electrical Insulation and Power Equipment &
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of
Condensed Matter, Xi’an Jiaotong
University, Xi’an 710049, China
| |
Collapse
|
7
|
Zhang L, Hu F, Shen L, Gao L, Yang Y, Pan Z, Xia C. Redox-Neutral Intramolecular Dearomative Spirocyclization of Phenols Induced by Visible Light. Org Lett 2023; 25:3168-3172. [PMID: 37126087 DOI: 10.1021/acs.orglett.3c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Described herein is a redox-neutral intramolecular dearomative spirocyclization induced by visible light. The photochemical cyclization was catalyzed by a phenolate anion-derived photocatalyst and delivered the spirocyclohexadienone. Mechanistic experiments revealed that the aryl halide was reduced to aryl radical via the single-electron transfer (SET) process under visible light irradiation. The electrophilic addition of an aryl radical with the phenolate anion moiety gave a radical anion intermediate, which recycled the photocatalyst by a second SET process.
Collapse
Affiliation(s)
- Linlin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Fengchi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Lei Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Lijuan Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Yunhong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, China
| |
Collapse
|
8
|
Singh SP, Kumar A, Kant R, Srivastava AK. Regioselective Synthesis of Functionalized Pyrrolo[1,2- a]pyrazine-3,6(2 H,4 H)-diones via Tandem Post-Ugi Cyclization and Gold(I)-Catalyzed Annulation. J Org Chem 2022; 87:12799-12815. [PMID: 36149815 DOI: 10.1021/acs.joc.2c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient synthesis of less explored pyrrolo[1,2-a]pyrazine-3,6(2H,4H)-diones is described in two steps from Ugi adducts. The method involves acid-mediated cyclization of Ugi adducts to form dihydropyrazinones followed by gold(I)-catalyzed regioselective annulation. The generality of the transformation was established by reacting a variety of substituted dihydropyrazinones under the optimized reaction conditions to form densely functionalized pyrrolo[1,2-a]pyrazine-3,6(2H,4H)-diones in good-to-excellent yields. It was also observed some of the acetone-derived Ugi adducts furnish 7-acyl-pyrroloimidazolones as a byproduct during TFA-mediated cyclization via alkyne-carbonyl metathesis and condensation.
Collapse
Affiliation(s)
- Sangh Priya Singh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 200201, India
| | - Asheesh Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ruchir Kant
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajay Kumar Srivastava
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 200201, India
| |
Collapse
|
9
|
Zhao K, Kohnke P, Yang Z, Cheng X, You S, Zhang L. Enantioselective Dearomative Cyclization Enabled by Asymmetric Cooperative Gold Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207518. [DOI: 10.1002/anie.202207518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ke Zhao
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Philip Kohnke
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Ziguang Yang
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Xinpeng Cheng
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Liming Zhang
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| |
Collapse
|
10
|
Chen Z, Tang W, Yang S, Yang L. Electrochemical synthesis of 3-halogenated spiro [4,5]trienones based on dearomative spirocyclization strategy. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Zhao K, Kohnke P, Yang Z, cheng X, you S, Zhang L. Enantioselective Dearomative Cyclization Enabled by Asymmetric Cooperative Gold Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ke Zhao
- University of California Santa Barbara department of chemistry and biochemistry 93106 santa barbara UNITED STATES
| | - philip Kohnke
- University of California Santa Barbara department of chemistry and biochemistry 93106 santa barbara UNITED STATES
| | - ziguang Yang
- University of California Santa Barbara department of chemistry and biochemistry 93106 santa barbara UNITED STATES
| | - Xinpeng cheng
- University of California Santa Barbara department of chemistry and biochemistry 93106 santa barbara UNITED STATES
| | - shuli you
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry CHINA
| | - Liming Zhang
- UCSB Chemistry and Biochemistry Dept of Chemistry and Biochemistry 93111 SANTA BARBARA UNITED STATES
| |
Collapse
|
12
|
Wang J, Ren P, Gu G, Jiang Z, Xiang B, Tang S, Jia AQ. Synthesis of Azepinoindoles via Pd-Catalyzed C(sp 2)-H Imidoylative Cyclization Reactions. J Org Chem 2022; 87:9663-9674. [PMID: 35696658 DOI: 10.1021/acs.joc.2c00717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and convenient method for the construction of diverse free (N-H)-benzazepinoindoles by Pd-catalyzed C(sp2)-H imidoylative cyclization of 3-(2-isocyanobenzyl)-1H-indoles was developed. The reaction shows a wide substrate scope and can be scaled up, providing a practical route to valuable bioactive azepinoindoles.
Collapse
Affiliation(s)
- Jiang Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Pinzhuo Ren
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Gongping Gu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Zongyou Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Bolin Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China.,Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Li Y, Zhang J, Zhao X. Importance of additive effects on the reactivity of Ag catalyzed domino cyclization: a computational chemistry survey. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Song L, Liu C, Tian G, Van Meervelt L, Van der Eycken J, Van der Eycken EV. Late-stage diversification of peptidomimetics and oligopeptides via gold-catalyzed post-Ugi cyclization. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Pan Y, Ren W, Zhang Z, Luo F, Hou X, Li X, Yang YF, Wang Y. Tandem 1,6-addition/cyclopropanation/rearrangement reaction of vinylogous para-quinone methides with 3-chlorooxindoles: construction of vicinal quaternary carbon centers. Org Chem Front 2022. [DOI: 10.1039/d2qo00471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel tandem 1,6-addition/cyclopropanation/rearrangement reaction of vinylogous para-quinone methides with 3-chlorooxindoles has been developed, providing dispirooxindole–cyclopentane–cyclohexadienones with vicinal quaternary carbon centers.
Collapse
Affiliation(s)
- Yuan Pan
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Zhanhao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fengbiao Luo
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaohan Hou
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoyang Li
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
16
|
Li Y, Zhou Y, Zhang J, Liu R, Zhao X, Wang Y. A DFT Study on Gold-Catalyzed Domino Cyclization for Post-Ugi Synthesis of Spiroindolines: Insights on the Origin of Remarkable Diastereoselectivity. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01453f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a comprehensive DFT study on gold-catalyzed domino cyclization to spiroindolines. The diastereoselectivity was analyzed based on the established coordination spheres. These computational results not only explain the origin...
Collapse
|
17
|
Sun H, He Y, Guo W. Pd-Catalyzed asymmetric decarboxylation for the construction of spiro[4.5]deca-6,9-dien-8-ones featuring vicinal quaternary carbons. Org Chem Front 2022. [DOI: 10.1039/d2qo00831a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A Pd-catalyzed decarboxylative strategy for the asymmetric construction of spiro[4.5]deca-6,9-dien-8-ones is reported. The epimerization of the resultant products occurred under otherwise Pd-catalysis.
Collapse
Affiliation(s)
- Haiyu Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an 710045, China
| | - Yicheng He
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an 710045, China
| | - Wusheng Guo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an 710045, China
| |
Collapse
|
18
|
Li HH, Zhang YP, Zhai TY, Liu BY, Shi CY, Zhou JM, Ye LW. Metal-free dearomatization reactions of naphthol-ynamides for the divergent and enantioselective synthesis of azaspirocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00685e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Brønsted acid (BA) catalyzed intramolecular dearomatization cyclization of naphthol-ynamides has been developed, enabling the practical and divergent synthesis of two azaspirocycles in high yields.
Collapse
Affiliation(s)
- Hang-Hao Li
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi-Ping Zhang
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tong-Yi Zhai
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin-Yang Liu
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chong-Yang Shi
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Mei Zhou
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
19
|
Zhang SS, Xue J, Gu Q, Jiang X, You SL. Dearomatization reaction of β-naphthols with disulfurating reagents. Org Biomol Chem 2021; 19:8761-8771. [PMID: 34581384 DOI: 10.1039/d1ob01731d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
p-TsOH-catalyzed intermolecular dearomatization reactions of β-naphthols with disulfurating reagents were developed. Various β-naphthalenones bearing a quaternary carbon stereogenic center were obtained smoothly in good to excellent yields with high chemoselectivity in the presence of 5 mol% p-TsOH. This reaction features mild reaction conditions and excellent functional group tolerance.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Jiahui Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
20
|
Yu Y, Zhang Z, Voituriez A, Rabasso N, Frison G, Marinetti A, Guinchard X. Enantioselective Au(I)-catalyzed dearomatization of 1-naphthols with allenamides through Tethered Counterion-Directed Catalysis. Chem Commun (Camb) 2021; 57:10779-10782. [PMID: 34586114 DOI: 10.1039/d1cc04088j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Tethered Counterion-Directed Catalysis (TCDC) approach has been applied to the enantioselective Au(I) catalyzed dearomatizations of 1-naphthols with allenamides. Stereocontrol is ensured by the intramolecular ion-pairing between the chiral gold-tethered phosphate and an iminium unit, that provides a rigid, well-defined chiral environment to the key electrophilic intermediate.
Collapse
Affiliation(s)
- Yunliang Yu
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. .,Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France
| | - Zhenhao Zhang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. .,LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Nicolas Rabasso
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France
| | - Gilles Frison
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.,Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 75005 Paris, France
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Xavier Guinchard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
21
|
Zhang YQ, Chen YB, Liu JR, Wu SQ, Fan XY, Zhang ZX, Hong X, Ye LW. Asymmetric dearomatization catalysed by chiral Brønsted acids via activation of ynamides. Nat Chem 2021; 13:1093-1100. [PMID: 34635816 DOI: 10.1038/s41557-021-00778-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023]
Abstract
Chiral Brønsted acid-catalysed asymmetric synthesis has received tremendous interest over the past decades, and numerous efficient synthetic methods have been developed based on this approach. However, the use of chiral Brønsted acids in these reactions is mostly limited to the activation of imine and carbonyl moieties, and the direct activation of carbon-carbon triple bonds has so far not been invoked. Here we show that chiral Brønsted acids enable the catalytic asymmetric dearomatization reactions of naphthol-, phenol- and pyrrole-ynamides by the direct activation of alkynes. This method leads to the practical and atom-economic construction of various valuable spirocyclic enones and 2H-pyrroles that bear a chiral quaternary carbon stereocentre in generally good-to-excellent yields with excellent chemo-, regio- and enantioselectivities. The activation mode of chiral Brønsted acid catalysis revealed in this study is expected to be of broad utility in catalytic asymmetric reactions that involve ynamides and the related heteroatom-substituted alkynes.
Collapse
Affiliation(s)
- Ying-Qi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ji-Ren Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Shao-Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xin-Yang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhi-Xin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China.
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
22
|
Zhao B, Zhang Z, Li P, Miao T, Wang L. Synthesis of Spirolactones via a BF 3·Et 2O-Promoted Cascade Annulation of α-Keto Acids and 1,3-Enynes. Org Lett 2021; 23:5698-5702. [PMID: 34264080 DOI: 10.1021/acs.orglett.1c01827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and effective method for the synthesis of spirolactones from readily available α-keto acids and 1,3-enynes is developed via a BF3·Et2O-promoted cascade annulation. This sequential process is conducted at room temperature, and it provides the functionalized spirolactones in good to excellent yield under metal-free conditions.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhen Zhang
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pinhua Li
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Tao Miao
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Jónsson HF, Orthaber A, Fiksdahl A. Studies on gold(I) and gold(III) alcohol functionalised NHC complexes. Dalton Trans 2021; 50:5128-5138. [PMID: 33720256 DOI: 10.1039/d1dt00387a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Five pairs of novel chiral alcohol functionalised gold(i) and gold(iii) NHC complexes derived from chiral amino alcohols, were synthesized and characterised (NMR, IR, HRMS). Single crystal X-ray diffraction data of gold(i) and gold(iii) complexes are reported and discussed. The chiral imidazolium preligands were readily synthesized via the oxalamides, subsequent reduction and final orthoformate condensation. An improved method was used for generation of gold(i) NHC complexes (up to 92%) and further oxidation afforded the corresponding gold(iii) NHC complexes (up to 99%). All the Au(i) and Au(iii) NHC complexes proved far more catalytically active in a 1,6-enyne alkoxycyclization test reaction than our previously tested N,N- and P,N-ligated Au(iii) complexes. Comparative gold(i) and gold(iii) catalytic studies demonstrated different catalytic ability, depending on the NHC ligand flexibility and bulkiness. Excellent yields (92-99%) of target alkoxycyclization product were obtained with both gold(i) and gold(iii) complexes with the bulky N1-Mes-N2-ethanol based NHC ligand.
Collapse
Affiliation(s)
- Helgi Freyr Jónsson
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Andreas Orthaber
- Department of Organic Chemistry - Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751 20, Uppsala, Sweden
| | - Anne Fiksdahl
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
24
|
Ouchi S, Koshikawa T, Nagashima Y, Tanaka K. Platinum-Catalyzed Intramolecular Spirocyclization of N-(Methylnaphthalenyl)propiolamides via Formal Aromatic Ene Reaction. Org Lett 2021; 23:1934-1939. [PMID: 33595327 DOI: 10.1021/acs.orglett.1c00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been established that an in situ-generated cationic platinum(II)/rac-BINAP complex catalyzes the intramolecular dearomative 5-endo spirocyclization of N-(methylnaphthalenyl)propiolamides via the deprotonation-protonation sequence (formal aromatic ene reaction). Mechanistic studies revealed that our previously reported dearomative 6-endo cyclization followed by the Friedel-Crafts reaction is kinetically and thermodynamically unfavored, and thus, the 5-endo spirocyclization proceeds selectively.
Collapse
Affiliation(s)
- Seiya Ouchi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takumi Koshikawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
25
|
Lu Z, Li T, Mudshinge SR, Xu B, Hammond GB. Optimization of Catalysts and Conditions in Gold(I) Catalysis—Counterion and Additive Effects. Chem Rev 2021; 121:8452-8477. [DOI: 10.1021/acs.chemrev.0c00713] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhichao Lu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Tingting Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Sagar R. Mudshinge
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Gerald B. Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
26
|
Cao Z, Scalabre A, Nlate S, Buffière S, Oda R, Pouget E, Bibal B. Silica-Supported Phosphine-Gold Complexes as an Efficient Catalytic System for a Dearomative Spirocyclization. Chemistry 2021; 27:427-433. [PMID: 33064331 DOI: 10.1002/chem.202004251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/08/2020] [Indexed: 11/07/2022]
Abstract
The combination of metal catalyst and inorganic silica frameworks provides a greener approach to recyclable catalysis. In this study, three phosphine-gold chloride complexes have been successfully covalently grafted onto chiral silica nanohelices. The resulting 3D ensembles showed chiroptical properties that allowed the monitoring of the supported ligands. The heterogeneous gold chloride catalysts in cooperation with silver triflate exhibited high reactivity in various reactions, especially in the spirocyclization of aryl alkynoate esters, for which a catalytic loading of 0.05 mol % could be employed. The heterogeneous catalysts could be easily recovered and recycled seven or eight times without any loss of efficiency. By adding more silver triflate, 25 cycles with full conversion were achieved owing to a complex catalytic system based on silica and metallic species.
Collapse
Affiliation(s)
- Zhen Cao
- Institut des Sciences Moléculaires, UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Sylvain Nlate
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Sonia Buffière
- Institut de Chimie de la Matière Condensée de Bordeaux, UMR CNRS 5026, Université de Bordeaux, 87 avenue du docteur Schweitzer, 33608, Pessac, France
| | - Reiko Oda
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Brigitte Bibal
- Institut des Sciences Moléculaires, UMR CNRS 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| |
Collapse
|
27
|
Li Y, Zhao X. Importance of Counterions in Gold‐hydrogen Bonding Cooperative Catalytic Approach to Spirocyclic Rings: Insights on Mechanism and Origins. ChemCatChem 2020. [DOI: 10.1002/cctc.202001303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics School of Chemistry State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University Xi'an 710049 P.R. China
| | - Xiang Zhao
- Institute for Chemical Physics School of Chemistry State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University Xi'an 710049 P.R. China
| |
Collapse
|
28
|
Yu K, Kong X, Yang J, Li G, Xu B, Chen Q. Electrochemical Oxidative Halogenation of N-Aryl Alkynamides for the Synthesis of Spiro[4.5]trienones. J Org Chem 2020; 86:917-928. [DOI: 10.1021/acs.joc.0c02429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianqiang Kong
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiajun Yang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Guodong Li
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
29
|
He Y, Song L, Liu C, Wu D, Li Z, Van Meervelt L, Van der Eycken EV. Access to Polycyclic Azepino[5,4,3- cd]indoles via a Gold-Catalyzed Post-Ugi Dearomatization Cascade. J Org Chem 2020; 85:15092-15103. [PMID: 33200934 DOI: 10.1021/acs.joc.0c01972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of a rapid and diverse access to complex natural product-like 3,4-fused indole scaffolds has always attracted considerable attention from synthetic and medicinal communities. We herein disclose a modular and straightforward protocol to prepare the densely substituted polycyclic azepino[5,4,3-cd]indole scaffolds. This synthetic process involves an Ugi four-component reaction from easily available starting materials and a gold-catalyzed post-Ugi domino dearomatization/Michael addition sequence, enabling facile access to the highly functionalized azepino[5,4,3-cd]indole core with excellent chemo-, regio-, and diastereoselectivity.
Collapse
Affiliation(s)
- Yi He
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Chao Liu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Danjun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, 310014 Hangzhou, China
| | - Zhenghua Li
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
30
|
Semleit N, Kreuzahler M, Haberhauer G. Gold(I)‐Catalyzed Allene–Diene–Alkyne Coupling Reaction to Polycycles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nina Semleit
- Institut für Organische Chemie Universität Duisburg‐Essen Universitätsstraße 7 45117 Essen Germany
| | - Mathis Kreuzahler
- Institut für Organische Chemie Universität Duisburg‐Essen Universitätsstraße 7 45117 Essen Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie Universität Duisburg‐Essen Universitätsstraße 7 45117 Essen Germany
| |
Collapse
|
31
|
Homma H, Harada S, Ito T, Kanda A, Nemoto T. Atypical Dearomative Spirocyclization of β-Naphthols with Diazoacetamides Using a Silver Catalyst. Org Lett 2020; 22:8132-8138. [PMID: 33026816 DOI: 10.1021/acs.orglett.0c03110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A chemoselective dearomatization of the less reactive benzenoid unit in β-naphthol was developed. Spirocyclization with a reductant constructs a pivotal structure for drug candidates. One-pot oxidative conversion enabled the tandem dearomatization of β-naphthol, producing conjugated tetraenone variants. The potential utility of the product as an F--selective anion sensor was also demonstrated. Theoretical studies revealed the intermediacy of silver-carbenoid species leading to chemoselective spirocyclization over arene cyclopropanation.
Collapse
Affiliation(s)
- Haruka Homma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayaka Kanda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
32
|
Chen C, He L. Advances in research of spirodienone and its derivatives: Biological activities and synthesis methods. Eur J Med Chem 2020; 203:112577. [DOI: 10.1016/j.ejmech.2020.112577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
|
33
|
Li Y, Zhao X. Assessing counterion effects in gold-catalyzed domino spirocyclization: an industrial perspective on hydrogen bonding. Phys Chem Chem Phys 2020; 22:19606-19612. [PMID: 32936160 DOI: 10.1039/d0cp03367g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We herein report a computational study of the hydrogen bonding in gold-catalyzed ipso-cyclization to diverse polyheterocyclic frameworks. The different roles of these hydrogen bonds are analyzed for the different ipso-cyclization reactions. The fine-tunability of the electronic as well as steric properties of gold counterions contributed substantially to the popularity of the dearomatization reaction, with robust applications in total synthesis and gold catalysis. We have found correlation between the hydrogen bonding parameters and chemoselectivity in gold-catalyzed spirocyclization, playing critical roles in determining the reaction direction of counterion-based enantioselective gold catalysis. The expanded use of counterions via hydrogen bonding interaction can occupy an important role in the future concerning catalyst optimization in gold catalysis.
Collapse
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
34
|
Liu A, Han K, Wu X, Chen S, Wang J. Construction of
Alkenyl‐Functionalized
Spirocarbocyclic Scaffolds from
Alkyne‐Containing Phenol‐Based
Biaryls
via
Sequential
Iodine‐Induced
Cyclization/Dearomatization and
Pd‐Catalyzed
Coupling of
N
‐Tosylhydrazones. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anjia Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot Inner Mongolia 010021 China
| | - Kaiming Han
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot Inner Mongolia 010021 China
| | - Xin‐Xing Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot Inner Mongolia 010021 China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot Inner Mongolia 010021 China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University Beijing 100871 China
| |
Collapse
|
35
|
Sharma A, Hazarika H, Sarmah M, Das B, Gogoi P. Indane-Fused Spiropentadiene Chromanones: A Pd-Catalyzed Spiroannulation Followed by Cyclization via C–H Activation Strategy. J Org Chem 2020; 85:11382-11395. [DOI: 10.1021/acs.joc.0c01475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Abhilash Sharma
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat 785006, India
| | - Hemanta Hazarika
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat 785006, India
| | - Manashi Sarmah
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
| | - Babulal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat 785006, India
| |
Collapse
|
36
|
Ding L, Wu WT, Zhang L, You SL. Construction of Spironaphthalenones via Gold-Catalyzed Intramolecular Dearomatization Reaction of β-Naphthol Derivatives. Org Lett 2020; 22:5861-5865. [DOI: 10.1021/acs.orglett.0c01945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lu Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Wen-Ting Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Liming Zhang
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
37
|
Zuo HD, Hao WJ, Zhu CF, Guo C, Tu SJ, Jiang B. Electrochemical Annulation–Iodosulfonylation of 1,5-Enyne-containing para-Quinone Methides (p-QMs) to Access (E)-Spiroindenes. Org Lett 2020; 22:4471-4477. [DOI: 10.1021/acs.orglett.0c01470] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hang-Dong Zuo
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
- College of Chemistry and Molecular Engineering and Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Chi-Fan Zhu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
- College of Chemistry and Molecular Engineering and Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu P. R. China
| | - Cheng Guo
- College of Chemistry and Molecular Engineering and Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
38
|
Computational studies of the mechanism of Pd-Catalyzed Intramolecular Friedel–Crafts allylic alkylation of phenols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Bai Y, Liu A, Wu XX, Chen S, Wang J. Palladium-Catalyzed Cascade Cyclization/Dearomatization/Arylation of Alkyne-Containing Phenol-Based Biaryls with Aryl Halides: An Entry to Diversely Functionalized Spirocyclohexadienones. J Org Chem 2020; 85:6687-6696. [DOI: 10.1021/acs.joc.0c00710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yunlong Bai
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Anjia Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xin-Xing Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Xu R, Yang P, Zheng C, You S. Pd‐Catalyzed
Asymmetric Intramolecular Arylative Dearomatization of
para
‐Aminophenols
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ren‐Qi Xu
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Ping Yang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
41
|
Hua J, Fang Z, Bian M, Ma T, Yang M, Xu J, Liu C, He W, Zhu N, Yang Z, Guo K. Electrochemical Synthesis of Spiro[4.5]trienones through Radical-Initiated Dearomative Spirocyclization. CHEMSUSCHEM 2020; 13:2053-2059. [PMID: 32012457 DOI: 10.1002/cssc.202000098] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
A novel and green route has been developed for the electrochemical synthesis of spiro[4.5]trienones through radical-initiated dearomative spirocyclization of alkynes with diselenides. This metal-free and oxidant-free electrosynthesis reaction was performed in an undivided cell under mild conditions. A variety of selenation spiro[4.5]trienones products were prepared in moderate-to-good yields, showing a broad scope and functional group tolerance. Moreover, the developed continuous-flow system combined with electrosynthesis possesses the potential to achieve scaled-up reactions, overcoming the low efficiency of conventional electrochemical scaled-up reactions.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Jia Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, P.R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| |
Collapse
|
42
|
Zhang HJ, Gu Q, You SL. Ni-Catalyzed Allylic Dearomatization Reaction of β-Naphthols with Allylic Alcohols. Org Lett 2020; 22:3297-3301. [DOI: 10.1021/acs.orglett.0c01109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui-Jun Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
43
|
Zhang J, Zhang Q, Zhu Z, Wang B. Theoretical investigation on the palladium-catalyzed selective formation of spirocyclenes from dienallenes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Affiliation(s)
- Juzeng An
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum via Selmi 2 Bologna Italy
| | - Marco Bandini
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum via Selmi 2 Bologna Italy
- Consorzio CINMPIS via Selmi 2 Bologna Italy
| |
Collapse
|
45
|
Li Y, Tang Z, Zhang J, Liu L. Gold-catalyzed intermolecular [4+1] spiroannulation via site-selective aromatic C(sp2)–H functionalization and dearomatization of phenol derivatives. Chem Commun (Camb) 2020; 56:8202-8205. [DOI: 10.1039/d0cc01118e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel gold(i)-catalyzed chemo- and site-selective cascade C–H functionalization/dearomatization of naphthols or phenols with o-alkynylaryl-α-diazoesters has been developed.
Collapse
Affiliation(s)
- Yongfeng Li
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Zhiqiong Tang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Junliang Zhang
- Department of Chemistry
- Fudan University
- Shanghai
- P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
| |
Collapse
|
46
|
Li Y, Zhao X. Mechanism and origins of gold-catalyzed domino cyclization to spiroindolines: the role of periplanar cooperation and hydrogen bonding interactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00359j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The detailed mechanism and origins of gold-catalyzed domino cyclization to indoloazocines are systematically studied by density functional theory.
Collapse
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
47
|
Yanada R, Okamoto N, Sueda T. One-Pot Synthesis of 9-Spirofluorenes via Tandem Copper-Catalyzed Arylative Cyclization and Spirocyclization of Biaryl-Substituted Alkynyl Alcohols. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Li Y, Zhao X. Gold-catalyzed domino cyclization enabling construction of diverse fused azaspiro tetracyclic scaffolds: a cascade catalysis mechanism due to a substrate and counterion. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The detailed mechanism and origins of gold-catalyzed domino cyclization to diverse fused azaspiro tetracyclic scaffolds by cooperative dual catalysis and cascade catalysis are systematically studied.
Collapse
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an710049
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an710049
| |
Collapse
|
49
|
Yi JC, Wu ZJ, You SL. Rh-Catalyzed Aminative Dearomatization of Naphthols with Hydroxylamine-O
-Sulfonic Acid (HOSA). European J Org Chem 2019. [DOI: 10.1002/ejoc.201900917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ji-Cheng Yi
- State Key Laboratory of Organometallic Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu 200032 Shanghai China
- Center for Excellence in Molecular Synthesis; School of Physical Science and Technology; 100 Haike Road 201210 Shanghai China
| | - Zhi-Jie Wu
- State Key Laboratory of Organometallic Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu 200032 Shanghai China
- Center for Excellence in Molecular Synthesis; School of Physical Science and Technology; 100 Haike Road 201210 Shanghai China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu 200032 Shanghai China
- Center for Excellence in Molecular Synthesis; School of Physical Science and Technology; 100 Haike Road 201210 Shanghai China
| |
Collapse
|
50
|
Yi J, Wu Z, You S. Copper‐Catalyzed Oxidative Dearomatization of 2‐Naphthols
via
Etherification. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ji‐Cheng Yi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| | - Zhi‐Jie Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| |
Collapse
|