1
|
Li YX, Dai YX, Wang JZ, Chauvin J, Zhang XJ, Cosnier S, Marks RS, Shan D. Fine tuning of porphyrin based-paddlewheel framework by imidazole derivative to boost electrochemiluminescence performance. Talanta 2024; 272:125779. [PMID: 38364567 DOI: 10.1016/j.talanta.2024.125779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Precise tuning the structure of catalytic center is of great importance for the construction of enhanced electrochemiluminescence (ECL) emitters and the development of ECL amplification strategies, which is a key factor in improving the sensitivity of biosensors. In this work, we report the enhanced ECL emitters based on the porphyrin-based paddlewheel framework (PPF) with axial coordinated imidazole-like ligands (PPF/X, X = 2-methylimidazole (MeIm), imidazole (Im), benzimidazole (BIM)). In this system, the electron-donating ability of the axial ligands is positively correlated to its coordination ability to the paddlewheel units and the catalytic ability of the axially coordinated paddlewheel units. In addition, the electrochemical and ECL behavior of PPF/X (X = MeIm, Im, BIM) with different axial coordinated ligands are explored.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Ju-Zheng Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jérome Chauvin
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000, Grenoble, France
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, PR China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000, Grenoble, France
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 90089, Israel
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
2
|
Siebe L, Butenuth C, Stammler A, Bögge H, Walleck S, Glaser T. Generation and Reactivity of μ-1,2-Peroxo Cu IICu II and Bis-μ-oxo Cu IIICu III Species and Catalytic Hydroxylation of Benzene to Phenol with Hydrogen Peroxide. Inorg Chem 2024; 63:2627-2639. [PMID: 38243916 DOI: 10.1021/acs.inorgchem.3c03914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Tetradentate-N4 ligands stabilize dinuclear {CuII(μ-1,2-peroxo)CuII} and {CuIII(μ-O)2CuIII} species, and CuII complexes of these ligands were reported to catalyze the oxidation of benzene with H2O2. Here, we report {CuII(μ-1,2-peroxo)CuII} and {CuIII(μ-O)2CuIII} intermediates of dinucleating bis(tetradentate-N4) ligands depending on the absence or presence of 6-methyl substituents on the terminal pyridine donors, respectively, generated either from {CuICuI} precursors with O2 or from {CuIICuII} precursors with H2O2 and NEt3. Both intermediates are not stable even at low temperatures, but they show no electrophilic HAT reactivity with DHA. Catalytic investigations on the hydroxylation of benzene with excess H2O2 between 30 and 50 °C indicate that both radical-based and {Cu2On}-based mechanisms depend strongly on the catalytic conditions. In the presence of a radical scavenger, TONs of ∼920/∼720 have been achieved without/with the 6-methyl group of the ligand. Although {CuII(μ-OH)CuII} reacts with excess H2O2 at -40 °C to {CuII(OOH)}2 species, these are only stable for seconds at 20 °C and cannot account for catalytic oxidations over a period of 24 h at 30-50 °C.
Collapse
Affiliation(s)
- Lena Siebe
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Christoph Butenuth
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Stephan Walleck
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
3
|
Dai YX, Li YX, Zhang XJ, Marks RS, Cosnier S, Shan D. Micelle-Assisted Confined Coordination Spaces for Benzimidazole: Enhanced Electrochemiluminescence for Nitrite Determination. ACS Sens 2024; 9:337-343. [PMID: 38194413 DOI: 10.1021/acssensors.3c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Selective and sensitive detection of nitrite has important medical and biological implications. In the present work, to obtain an enhanced electrochemiluminescence (ECL) determination of nitrite, a novel nano-ECL emitter CoBIM/cetyltrimethylammonium bromide (CTAB) was prepared via a micelle-assisted, energy-saving, and ecofriendly method based on benzimidazole (BIM) and CTAB. Unlike conventional micelle assistance, the deprotonated BIM (BIM-) preferential placement was in the palisade layer of cationic CTAB-based micelles. Enriching the original CTAB micelle with BIM- disrupted its stability and resulted in the formation of considerably smaller BIM/CTAB-based micelles, providing a confined coordination environment for BIM- and Co2+. As a result, the growth of CoBIM/CTAB was also limited. Owing to the unusual nitration reaction between BIM and nitrite, the prepared CoBIM/CTAB was successfully applied as a novel ECL probe for the detection of nitrite with a wide linear range of 1-1500 μM and a low detection limit of 0.67 μM. This work also provides a promising ECL platform for ultrasensitive monitoring of nitrite and it was applied with sausages and pickled vegetables.
Collapse
Affiliation(s)
- Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, PR China
| | - Robert S Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Serge Cosnier
- University Grenoble Alpes, CNRS, DCM UMR 5250, Grenoble F-38000, France
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, Gliwice 44-100, Poland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
4
|
Mondal B, Bali A, Sharma T. Identification and characterization of stress degradation products of ibrutinib by LC-UV/PDA and LC-Q/TOF-MS studies. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:248-261. [PMID: 37612237 DOI: 10.1177/14690667231194814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The anticancer drug ibrutinib was subjected to stress degradation studies under the ICH-prescribed hydrolytic, photolytic, oxidative and thermal stress conditions, and its degradation behavior was studied. A significant degradation was noted for the drug under acidic/alkaline hydrolytic, acid/alkaline photolytic, and oxidative conditions. The UPLC-UV/PDA studies revealed the generation of six degradation products (I-VI), and these were adequately resolved from the drug under the developed chromatographic conditions over a Kinetex® C18 (100 mm×4.6 mm; 2.6 μm) column employing isocratic elution method. Detection wavelength was selected as 289 nm. The UPLC-UV/PDA method conditions were extrapolated to UPLC-MS/TOF studies. All the six degradation products were found to be ionized in the total ion chromatogram, and the products could be identified and characterized from their mass spectral data. The possible degradation route of ibrutinib leading to generation of various products was also postulated.
Collapse
Affiliation(s)
- Bidisha Mondal
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study, Panjab University, Chandigarh, India
| | - Alka Bali
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study, Panjab University, Chandigarh, India
| | - Tanvi Sharma
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Chimlert J, Suktanarak P, Plainpan N, Paokhan M, Tuntulani T, Leeladee P. Cycloalkane Oxidation Catalyzed by Copper‐based Catalysts with H
2
O
2
under Mild Conditions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Jantira Chimlert
- Department of Chemistry Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| | - Pattira Suktanarak
- Faculty of Sport and Health Sciences Thailand National Sport University Lampang Campus Lampang 52100 Thailand
| | - Nukorn Plainpan
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO) École Polytechnique Fédérale de Lausanne (EPFL) Station 6 1015 Lausanne Switzerland
| | - Mantana Paokhan
- Department of Chemistry Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| | - Pannee Leeladee
- Department of Chemistry Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
6
|
Fujisaki H, Okamura M, Hikichi S, Kojima T. Selective alkane hydroxylation and alkene epoxidation using H 2O 2 and Fe(II) catalysts electrostatically attached to a fluorinated surface. Chem Commun (Camb) 2023; 59:3265-3268. [PMID: 36820494 DOI: 10.1039/d2cc06998a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Fe(II) complexes with pentadentate ligands, including N-heterocyclic carbene moieties, were prepared and electrostatically attached onto the perfluorinated surface of a mesoporous aluminosilicate. The heterogeneous catalysts were applied to the catalytic oxidation of cyclohexane and cyclohexene using H2O2 as an oxidant in CH3CN, demonstrating high performance and selectivity in alkane hydroxylation and cyclohexene epoxidation.
Collapse
Affiliation(s)
- Hiroto Fujisaki
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Masaya Okamura
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan.
| | - Shiro Hikichi
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan. .,CREST, Japan Science and Technology Agency (JST), Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan. .,CREST, Japan Science and Technology Agency (JST), Japan
| |
Collapse
|
7
|
Xu Y, Cao Y, Tan L, Chen Q, Fang Y. The development of cobalt phosphide co-catalysts on BiVO 4 photoanodes to improve H 2O 2 production. J Colloid Interface Sci 2023; 633:323-332. [PMID: 36459937 DOI: 10.1016/j.jcis.2022.11.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Photoanodic hydrogen peroxide (H2O2) production via water oxidation is limited by low yields and poor selectivity. Herein, four variations of cobalt phosphides, including pristine CoP and Co2P crystals, and two mixed-phase cobalt phosphides (CoP/Co2P) with different ratios, were applied as co-catalysts on the BiVO4 (BVO) photoanode to improve H2O2 production. The optimal yield and selectivity were approximately 9.6 µmol‧h-1‧cm-2 and 25.2 % at a voltage bias of 1.7 V vs reversible hydrogen electrode (VRHE) under sunlight illumination, respectively. This performance is approximately 1.8 times that of pristine BVO photoanode. The roles of the Co and P sites were investigated. In particular, the Co site promotes the breaking of one HO bond in water to form OH• radicals, which is the rate-determining step in H2O2 production. The P site plays an important role in the desorption of H2O2 formed from the catalyst, which is responsible for the recovery of fresh catalytic sites. Among the four samples, Co2P exhibited the best performance for H2O2 production because it had the highest rate of OH• formation owing to its improved accumulation property. This study offers a rational design strategy for co-catalysts for photoanodic H2O2 production.
Collapse
Affiliation(s)
- Yuntao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yanfei Cao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Li Tan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| | - Qiao Chen
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
8
|
Li YX, Li J, Zeng HB, Zhang XJ, Cosnier S, Shan D. Artificial Light-Harvesting System Based on Zinc Porphyrin and Benzimidazole: Construction, Resonance Energy Transfer, and Amplification Strategy for Electrochemiluminescence. Anal Chem 2023; 95:3493-3498. [PMID: 36734630 DOI: 10.1021/acs.analchem.2c05559] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Constructing robust and efficient luminophores is of significant importance in the development of electrochemiluminescence (ECL) amplification strategies. Inspired by the resonance energy transfer in natural light-harvesting systems, we propose a novel ECL amplification system based on ECL resonance energy transfer (ECL-RET), which integrates two luminophores, benzimidazole (BIM) and zinc(II) tetrakis(4-carboxyphenyl)porphine (ZnTCPP), into one framework. Through disassembling and reconstruction processes, numerous BIM surround ZnTCPP in the constructed ZIF-9-ZnTCPP. Combined with the overlapped spectra between the emission of BIM and the absorption of ZnTCPP, the energy of multiple BIM (donor) can be concentrated to a single ZnTCPP (acceptor) to amplify the ECL emission of the acceptor. This work provides a convenient way to design an efficient ECL-RET system, which initiates a brand-new chapter in the development of ECL amplification strategies.
Collapse
Affiliation(s)
- Yi-Xuan Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| | - Junji Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| | - Hai-Bo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen518060, P R China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000Grenoble, France
| | - Dan Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| |
Collapse
|
9
|
Dai YX, Li YX, Zhang XJ, Cosnier S, Shan D. Tuning Dimensionality of Benzimidazole Aggregates by Using Tetraoctylammonium Bromide: Enhanced Electrochemiluminescence Studies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6228-6233. [PMID: 36655778 DOI: 10.1021/acsami.2c22393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring the depolymerization strategy of liposoluble luminophores in the aqueous phase is vital for the development of electrochemiluminescence (ECL). In this work, tetraoctylammonium bromide (TOAB) with four long hydrophobic chains and short hydrophilic ends is used as a template to limit the aggregation of benzimidazole (BIM). By adjusting the loading of BIM on the hydrophobic chains of TOAB, a two-dimensional lamellar BIM/TOAB is formed, the ECL intensity of which is 6.4 times higher than that of the aggregated BIM (H2O2 as the coreactant). In terms of ECL spectroscopies, cyclic voltammetry , ECL transients, and the adjustment of the scanning potential range, the ECL mechanism is thoroughly studied. This work provides a new way to depolymerize organic luminophores and reveals a possible pathway in the annihilation ECL mechanism.
Collapse
Affiliation(s)
- Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen518060, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, GrenobleF-38000, France
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| |
Collapse
|
10
|
Monika, Sarkar A, Karmodak N, Dhar BB, Adhikari S. Bio-inspired Cu(II) amido-quinoline complexes as catalysts for aromatic C-H bond hydroxylation. Dalton Trans 2023; 52:540-545. [PMID: 36537082 DOI: 10.1039/d2dt03242b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cu(II) complexes supported by tetradentate amido-quinoline acyclic ligands (L1 & L2) have been synthesized, characterized, and employed as catalysts for aromatic C-H hydroxylation using H2O2 as an oxidant in the absence of an external base with a high selectivity of around 90% for phenols via the non-radical pathway (TON ≥720). The KIE value, various spectroscopic studies and DFT calculation supported the involvement of Cu(II)-OOH species.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, Shiv Nadar IoE, U.P. 201314, India.
| | - Aniruddha Sarkar
- Department of Chemical Sciences, IISER Kolkata, Mohanpur 741246, India
| | | | | | - Sanjay Adhikari
- Faculty of Basic and Applied Sciences, Madhav University, Rajasthan 307026, India
| |
Collapse
|
11
|
Han F, Zhang D, Salli S, Ye J, Li Y, Rosei F, Wen XD, Niemantsverdriet H, Richards E, Su R. Copper Cocatalyst Modulated Radical Generation for Selective Heterogeneous Photosynthesis of α-Haloketones. ACS Catal 2023; 13:248-255. [PMID: 36644650 PMCID: PMC9830627 DOI: 10.1021/acscatal.2c05189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Indexed: 12/23/2022]
Abstract
The α-haloketones are important precursors for synthetic chemistry and pharmaceutical applications; however, their production relies heavily on traditional synthetic methods via halogenation of ketones that are toxic and environmentally risky. Here, we report a heterogeneous photosynthetic strategy of α-haloketone production from aromatic olefins using copper-modified graphitic carbon nitride (Cu-C3N4) under mild reaction conditions. By employing NiX2 (X = Cl, Br) as the halogen source, a series of α-haloketones can be synthesized using atmospheric air as the oxidant under visible-light irradiation. In comparison with pristine carbon nitride, the addition of Cu as a cocatalyst provides a moderate generation rate of halogen radicals and selective reduction of molecular oxygen into •OOH radicals, thus leading to a high selectivity to α-haloketones. The Cu-C3N4 also exhibits high stability and versatility, rendering it a promising candidate for solar-driven synthetic applications.
Collapse
Affiliation(s)
- Feiyu Han
- Soochow
Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China
| | - Dongsheng Zhang
- Soochow
Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China
| | - Sofia Salli
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
| | - Jiani Ye
- Soochow
Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China,State
Key Laboratory of Coal Conversion, Institute
of Coal Chemistry, CAS, Taiyuan 030001, China
| | - Federico Rosei
- Center
for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Xiao-Dong Wen
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China,State
Key Laboratory of Coal Conversion, Institute
of Coal Chemistry, CAS, Taiyuan 030001, China
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China,SynCat@DIFFER, Syngaschem BV, HH Eindhoven 6336, The
Netherlands
| | - Emma Richards
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,
Emma Richards ()
| | - Ren Su
- Soochow
Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China,Ren Su ()
| |
Collapse
|
12
|
Rajeev A, Balamurugan M, Sankaralingam M. Rational Design of First-Row Transition Metal Complexes as the Catalysts for Oxidation of Arenes: A Homogeneous Approach. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
13
|
Qi H, Xu D, Lin J, Sun W. Copper-catalyzed direct hydroxylation of arenes to phenols with hydrogen peroxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Takahashi H, Wada K, Tanaka K, Fujikawa K, Hitomi Y, Endo T, Kodera M. Alkane Oxidation with H 2O 2 Catalyzed by Dicopper Complex with 6-hpa Ligand: Mechanistic Insights as Key Features for the Methane Oxidation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroto Takahashi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Kazuhiko Wada
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Kosei Tanaka
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Kyosuke Fujikawa
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Takatsugu Endo
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| |
Collapse
|
15
|
Abay TA, Wanna WH, Natarajan T, Tsai YF, Janmanchi D, Jiang JC, Abu-Reziq R, Yu SSF. Selective oxidation of benzene by an iron oxide carbonaceous nanocatalyst prepared from iron perchlorate salts and hydrogen peroxide in benzene and acetonitrile. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Lee YJ, Kim H, Kim Y, Cho KH, Hong S, Nam KT, Kim SH, Choi CH, Seo J. Repurposing a peptide antibiotic as a catalyst: a multicopper–daptomycin complex as a cooperative O–O bond formation and activation catalyst. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptide antibiotic, daptomycin, was repurposed to a multicopper catalyst presenting cooperative rate enhancement in O–O bond formation and activation reactions.
Collapse
Affiliation(s)
- Yen Jea Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
17
|
Chatterjee P, Wang H, Manzano JS, Kanbur U, Sadow AD, Slowing II. Surface ligands enhance the catalytic activity of supported Au nanoparticles for the aerobic α-oxidation of amines to amides. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02121d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic aerobic α-oxidation of amines in water is an atom economic and green alternative to current methods of amide synthesis. The reaction uses O2 as terminal oxidant, avoids hazardous...
Collapse
|
18
|
Yamada Y, Teoh CM, Toyoda Y, Tanaka K. Direct catalytic benzene hydroxylation under mild reaction conditions by using a monocationic μ-nitrido-bridged iron phthalocyanine dimer with 16 peripheral methyl groups. NEW J CHEM 2022. [DOI: 10.1039/d1nj05369h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct catalytic benzene hydroxylation under mild reaction conditions was achieved using a monocationic μ-nitrido-bridged iron phthalocyanine dimer with 16 peripheral methyl groups.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Chee-Ming Teoh
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuka Toyoda
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
19
|
Shchepochkin AV, Antipin FV, Charushin VN, Chupakhin ON. Oxidative C–H Functionalization of Arenes: Main Tool of 21st Century Green Chemistry. A Review. DOKLADY CHEMISTRY 2021. [DOI: 10.1134/s0012500821070016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wang Z, Hojo H, Einaga H. Photocatalytic hydroxylation of benzene to phenol with dioxygen using sodium decatungstate. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Rahmani N, Amiri A, Ziarani GM, Badiei A. Review of some transition metal-based mesoporous catalysts for the direct hydroxylation of benzene to phenol (DHBP). MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Kang Q, Lin Y, Li Y, Xu L, Li K, Shi H. Catalytic S
N
Ar Hydroxylation and Alkoxylation of Aryl Fluorides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qi‐Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Ke Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
23
|
Kang QK, Lin Y, Li Y, Xu L, Li K, Shi H. Catalytic S N Ar Hydroxylation and Alkoxylation of Aryl Fluorides. Angew Chem Int Ed Engl 2021; 60:20391-20399. [PMID: 34263536 DOI: 10.1002/anie.202106440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Nucleophilic aromatic substitution (SN Ar) is a powerful strategy for incorporating a heteroatom into an aromatic ring by displacement of a leaving group with a nucleophile, but this method is limited to electron-deficient arenes. We have now established a reliable method for accessing phenols and phenyl alkyl ethers via catalytic SN Ar reactions. The method is applicable to a broad array of electron-rich and neutral aryl fluorides, which are inert under classical SN Ar conditions. Although the mechanism of SN Ar reactions involving metal arene complexes is hypothesized to involve a stepwise pathway (addition followed by elimination), experimental data that support this hypothesis is still under exploration. Mechanistic studies and DFT calculations suggest either a stepwise or stepwise-like energy profile. Notably, we isolated a rhodium η5 -cyclohexadienyl complex intermediate with an sp3 -hybridized carbon bearing both a nucleophile and a leaving group.
Collapse
Affiliation(s)
- Qi-Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Ke Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
24
|
|
25
|
Copper carbene complexes. Synthesis and structural analysis of a chloro-bridged dicopper cation and the triosmium-copper carbene cluster complex HOs3(CO)11[µ-Cu(IPr)]. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Immobilization of a copper complex based on the tripodal ligand (2‐aminoethyl)bis(2‐pyridylmethyl)amine (uns‐penp). Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Mishra S, Bal R, Dey R. Heterogeneous recyclable copper oxide supported on activated red mud as an efficient and stable catalyst for the one pot hydroxylation of benzene to phenol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Wei D, Huang L, Liang H, Zou J, Chen W, Yang C, Hou Y, Zheng D, Zhang J. Photocatalytic hydroxylation of benzene to phenol over organosilane-functionalized FeVO4 nanorods. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00890k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface silylation of FeVO4 with organosilane functional groups is a promising strategy to realize kinetic control of photocatalytic benzene hydroxylation reactions.
Collapse
Affiliation(s)
- Danlei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Lianqi Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Hanying Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Junhua Zou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Wenwen Chen
- College of Environment & Resources, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Dandan Zheng
- College of Environment & Resources, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| |
Collapse
|
29
|
Ticconi B, Capocasa G, Cerrato A, Di Stefano S, Lapi A, Marincioni B, Olivo G, Lanzalunga O. Insight into the chemoselective aromatic vs. side-chain hydroxylation of alkylaromatics with H 2O 2 catalyzed by a non-heme imine-based iron complex. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01868f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Side-chain/ring oxygenated product ratio increases upon decreasing the benzylic bond dissociation energy in the oxidation of alkylaromatics with H2O2 catalyzed by an imine-based iron complex.
Collapse
Affiliation(s)
- Barbara Ticconi
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Giorgio Capocasa
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Andrea Cerrato
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Stefano Di Stefano
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Andrea Lapi
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Beatrice Marincioni
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| |
Collapse
|
30
|
One-Step Catalytic or Photocatalytic Oxidation of Benzene to Phenol: Possible Alternative Routes for Phenol Synthesis? Catalysts 2020. [DOI: 10.3390/catal10121424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phenol is an important chemical compound since it is a precursor of the industrial production of many materials and useful compounds. Nowadays, phenol is industrially produced from benzene by the multi-step “cumene process”, which is energy consuming due to high temperature and high pressure. Moreover, in the “cumene process”, the highly explosive cumene hydroperoxide is produced as an intermediate. To overcome these disadvantages, it would be useful to develop green alternatives for the synthesis of phenol that are more efficient and environmentally benign. In this regard, great interest is devoted to processes in which the one-step oxidation of benzene to phenol is achieved, thanks to the use of suitable catalysts and oxidant species. This review article discusses the direct oxidation of benzene to phenol in the liquid phase using different catalyst formulations, including homogeneous and heterogeneous catalysts and photocatalysts, and focuses on the reaction mechanisms involved in the selective conversion of benzene to phenol in the liquid phase.
Collapse
|
31
|
Ranjbar Kalahrudi S, Shakeri A, Ghadimi A, Mahdavi H. Selective oxidation of benzene to phenol using functionalized membrane via Fenton-like process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Recent progress in catalytic oxygenation of aromatic C–H groups with the environmentally benign oxidants H
2
O
2
and O
2. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roman V. Ottenbacher
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Evgenii P. Talsi
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Konstantin P. Bryliakov
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| |
Collapse
|
33
|
Yu ZH, Gan YL, Xu J, Xue B. Direct Catalytic Hydroxylation of Benzene to Phenol Catalyzed by FeCl3 Supported on Exfoliated Graphitic Carbon Nitride. Catal Letters 2020. [DOI: 10.1007/s10562-019-03003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Li N, Qu X, Wang L, Tian Q, Chen Y, Yao X, Chen S, Jin S. Chemical synthesis of chitosan-mimetic polymers via ring-opening metathesis polymerization and their applications in Cu 2+ adsorption and catalytic decomposition. Polym Chem 2020. [DOI: 10.1039/d0py00668h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aiming at solving the uncontrollability in the properties of chitosan, we synthesized two chitosan-mimetic polymers, the homopolymer mimic PHNI and the copolymer mimic PHNI-PHNIA, by ring-opening metathesis polymerization (ROMP).
Collapse
Affiliation(s)
- Na Li
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Xiaosai Qu
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Lifeng Wang
- National Engineering & Technology Research Center for Paper Chemicals
- Hangzhou
- P. R. China
| | - Qingquan Tian
- National Engineering & Technology Research Center for Paper Chemicals
- Hangzhou
- P. R. China
| | - Yu Chen
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Xianping Yao
- National Engineering & Technology Research Center for Paper Chemicals
- Hangzhou
- P. R. China
| | - Shusen Chen
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Shaohua Jin
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|
35
|
Xiao P, Osuga R, Wang Y, Kondo JN, Yokoi T. Bimetallic Fe–Cu/beta zeolite catalysts for direct hydroxylation of benzene to phenol: effect of the sequence of ion exchange for Fe and Cu cations. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01216e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, bimetallic cation-exchanged zeolite catalysts have received much attention.
Collapse
Affiliation(s)
- Peipei Xiao
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Ryota Osuga
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Yong Wang
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Junko N. Kondo
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Toshiyuki Yokoi
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
36
|
Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Sun W, Gao L, Sun X, Yang H, Zheng G. Heterogeneous Nitrogen‐doped Graphene Catalysed HOO
−
Generation via a Non‐radical Mechanism for Base‐free Dakin Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Sun
- School of Chemistry and Chemical EngineeringUniversity of Jinan No. 336 West Road of Nan Xinzhuang Jinan 250022 People's Republic of China E-mail
| | - Lingfeng Gao
- School of Chemistry and Chemical EngineeringUniversity of Jinan No. 336 West Road of Nan Xinzhuang Jinan 250022 People's Republic of China E-mail
| | - Xu Sun
- School of Chemistry and Chemical EngineeringUniversity of Jinan No. 336 West Road of Nan Xinzhuang Jinan 250022 People's Republic of China E-mail
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical EngineeringLiaocheng University 252059 Liaocheng People's Republic of China
| | - Gengxiu Zheng
- School of Chemistry and Chemical EngineeringUniversity of Jinan No. 336 West Road of Nan Xinzhuang Jinan 250022 People's Republic of China E-mail
| |
Collapse
|
38
|
Sun Q, Fu X, Si R, Wang C, Yan N. Mesoporous Silica‐Encaged Ultrafine Bimetallic Nanocatalysts for CO
2
Hydrogenation to Formates. ChemCatChem 2019. [DOI: 10.1002/cctc.201901167] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiming Sun
- NUS Environmental Research Institute (NERI)National University of Singapore 138602 Singapore
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore
| | - Xinpu Fu
- NUS Environmental Research Institute (NERI)National University of Singapore 138602 Singapore
| | - Rui Si
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 P. R. China
| | - Chi‐Hwa Wang
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore
| |
Collapse
|
39
|
Sun W, Gao L, Zheng G. A radical capture mechanism for immediate Csp 2-H bond hydroxylation via a heterogeneous Cu-graphene catalyst. Chem Commun (Camb) 2019; 55:8915-8918. [PMID: 31259353 DOI: 10.1039/c9cc02906k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A radical capture mechanism via a synergistic heterogeneous Cu2O-rGO catalyst for Csp2-H bond immediate hydroxylation has been developed. This protocol suggests the involvement of a C-centered radical (˙C), generated through an O-centered radical (˙OH) initiated hydrogen atom transfer (HAT) process.
Collapse
Affiliation(s)
- Wei Sun
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 West Road of Nan Xinzhuang, Jinan 250022, P. R. China.
| | - Lingfeng Gao
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 West Road of Nan Xinzhuang, Jinan 250022, P. R. China.
| | - Gengxiu Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 West Road of Nan Xinzhuang, Jinan 250022, P. R. China.
| |
Collapse
|
40
|
Zhang L, Hou Q, Zhou Y, Wang J. Phosphotungstic anion-paired quinoline salt for heterogeneous photocatalytic hydroxylation of benzene to phenol with air. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Acharyya SS, Ghosh S, Yoshida Y, Kaneko T, Sasaki T, Iwasawa Y. NH 3 -Driven Benzene C-H Activation with O 2 that Opens a New Way for Selective Phenol Synthesis. CHEM REC 2019; 19:2069-2081. [PMID: 31268237 DOI: 10.1002/tcr.201900023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 11/08/2022]
Abstract
Catalytic benzene C-H activation toward selective phenol synthesis with O2 remains a stimulating challenge to be tackled. Phenol is currently produced industrially by the three-steps cumene process in liquid phase, which is energy-intensive and not environmentally friendly. Hence, there is a strong demand for an alternative gas-phase single-path reaction process. This account documents the pivotal confined single metal ion site platform with a sufficiently large coordination sphere in β zeolite pores, which promotes the unprecedented catalysis for the selective benzene hydroxylation with O2 under coexisting NH3 by the new inter-ligand concerted mechanism. Among alkali and alkaline-earth metal ions and transition and precious metal ions, single Cs+ and Rb+ sites with ion diameters >0.300 nm in the β pores exhibited good performances for the direct phenol synthesis in a gas-phase single-path reaction process. The single Cs+ and Rb+ sites that possess neither significant Lewis acidic-basic property nor redox property, cannot activate benzene, O2 , and NH3 , respectively, whereas when they coadsorbed together, the reaction of the inter-coadsorbates on the single alkali-metal ion site proceeds concertedly (the inter-ligand concerted mechanism), bringing about the benzene C-H activation toward phenol synthesis. The NH3 -driven benzene C-H activation with O2 was compared to the switchover of the reaction pathways from the deep oxidation to selective oxidation of benzene by coexisting NH3 on Pt6 metallic cluster/β and Ni4 O4 oxide cluster/β. The NH3 -driven selective oxidation mechanism observed with the Cs+ /β and Rb+ /β differs from the traditional redox catalysis (Mars-van Krevelen) mechanism, simple Langmuir-Hinshelwood mechanism, and acid-base catalysis mechanism involving clearly defined interaction modes. The present catalysis concept opens a new way for catalytic selective oxidation processes involving direct phenol synthesis.
Collapse
Affiliation(s)
- Shankha S Acharyya
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| | - Shilpi Ghosh
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| | - Yusuke Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| | - Takehiko Sasaki
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182 8585, Japan
| |
Collapse
|
42
|
Trammell R, Rajabimoghadam K, Garcia-Bosch I. Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O 2 Model Systems to Organometallic Transformations. Chem Rev 2019; 119:2954-3031. [PMID: 30698952 DOI: 10.1021/acs.chemrev.8b00368] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Copper is one of the most abundant and less toxic transition metals. Nature takes advantage of the bioavailability and rich redox chemistry of Cu to carry out oxygenase and oxidase organic transformations using O2 (or H2O2) as oxidant. Inspired by the reactivity of these Cu-dependent metalloenzymes, chemists have developed synthetic protocols to functionalize organic molecules under enviormentally benign conditions. Copper also promotes other transformations usually catalyzed by 4d and 5d transition metals (Pd, Pt, Rh, etc.) such as nitrene insertions or C-C and C-heteroatom coupling reactions. In this review, we summarized the most relevant research in which copper promotes or catalyzes the functionalization of organic molecules, including biological catalysis, bioinspired model systems, and organometallic reactivity. The reaction mechanisms by which these processes take place are discussed in detail.
Collapse
Affiliation(s)
- Rachel Trammell
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| | | | - Isaac Garcia-Bosch
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| |
Collapse
|
43
|
Fang L, Dong S, Shi L, Sun Q. Modification of CuCl 2·2H 2O by dielectric barrier discharge and its application in the hydroxylation of benzene. NEW J CHEM 2019. [DOI: 10.1039/c9nj03261d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DBD plasma converts a homogeneous catalyst CuCl2·H2O into a heterogeneous catalyst CuCl2–DBD by removing some chlorine from CuCl2·H2O.
Collapse
Affiliation(s)
- Lu Fang
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Shiyang Dong
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Lei Shi
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Qi Sun
- Faculty of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| |
Collapse
|
44
|
Burek BO, Bahnemann DW, Bloh JZ. Modeling and Optimization of the Photocatalytic Reduction of Molecular Oxygen to Hydrogen Peroxide over Titanium Dioxide. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03638] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bastien O. Burek
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstraße 3, 30167 Hannover, Germany
| | - Detlef W. Bahnemann
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstraße 3, 30167 Hannover, Germany
- Laboratory “Photoactive Nanocomposite Materials”, Saint-Petersburg State University, Ulyanovskaya str. 1, Peterhof, Saint-Petersburg 198504, Russia
| | - Jonathan Z. Bloh
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| |
Collapse
|
45
|
ElMetwally AE, Eshaq G, Yehia FZ, Al-Sabagh AM, Kegnæs S. Iron Oxychloride as an Efficient Catalyst for Selective Hydroxylation of Benzene to Phenol. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03590] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ahmed E. ElMetwally
- Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ghada Eshaq
- Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Fatma Z. Yehia
- Petrochemicals department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ahmed M. Al-Sabagh
- Petroleum applications department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Søren Kegnæs
- DTU Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
46
|
Zhou Y, Ma Z, Tang J, Yan N, Du Y, Xi S, Wang K, Zhang W, Wen H, Wang J. Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism. Nat Commun 2018; 9:2931. [PMID: 30050071 PMCID: PMC6062531 DOI: 10.1038/s41467-018-05351-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Abstract
Hydroxylation of arenes via activation of aromatic Csp2–H bond has attracted great attention for decades but remains a huge challenge. Herein, we achieve the ring hydroxylation of various arenes with stoichiometric hydrogen peroxide (H2O2) into the corresponding phenols on a robust heterogeneous catalyst series of V–Si–ZSM-22 (TON type vanadium silicalite zeolites) that is straightforward synthesized from an unusual ionic liquid involved dry-gel-conversion route. For benzene hydroxylation, the phenol yield is 30.8% (selectivity >99%). Ring hydroxylation of mono-/di-alkylbenzenes and halogenated aromatic hydrocarbons cause the yields up to 26.2% and selectivities above 90%. The reaction is completed within 30 s, the fastest occasion so far, resulting in ultra-high turnover frequencies (TOFs). Systematic characterization including 51V NMR and X-ray absorption fine structure (XAFS) analyses suggest that such high activity associates with the unique non-radical hydroxylation mechanism arising from the in situ created diperoxo V(IV) state. Hydroxylation of arenes via activation of aromatic Csp2–H bond remains a challenge. Here, the authors have managed to get various arenes hydroxylated to corresponding phenols using stoichiometric hydrogen peroxide and a series of robust V–Si–ZSM-22 catalysts synthesized via an ionic liquid involved dry-gel-conversion route.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Zhipan Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Junjie Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Kai Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Haimeng Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China.
| |
Collapse
|
47
|
Wang W, Li N, Tang H, Ma Y, Yang X. Vanadium oxyacetylacetonate grafted on UiO-66-NH 2 for hydroxylation of benzene to phenol with molecular oxygen. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Khenkin AM, Somekh M, Carmieli R, Neumann R. Electrochemical Hydroxylation of Arenes Catalyzed by a Keggin Polyoxometalate with a Cobalt(IV) Heteroatom. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Alexander M. Khenkin
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Miriam Somekh
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Ronny Neumann
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
49
|
Khenkin AM, Somekh M, Carmieli R, Neumann R. Electrochemical Hydroxylation of Arenes Catalyzed by a Keggin Polyoxometalate with a Cobalt(IV) Heteroatom. Angew Chem Int Ed Engl 2018. [PMID: 29537140 DOI: 10.1002/anie.201801372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sustainable, selective direct hydroxylation of arenes, such as benzene to phenol, is an important research challenge. An electrocatalytic transformation using formic acid to oxidize benzene and its halogenated derivatives to selectively yield aryl formates, which are easily hydrolyzed by water to yield the corresponding phenols, is presented. The formylation reaction occurs on a Pt anode in the presence of [CoIII W12 O40 ]5- as a catalyst and lithium formate as an electrolyte via formation of a formyloxyl radical as the reactive species, which was trapped by a BMPO spin trap and identified by EPR. Hydrogen was formed at the Pt cathode. The sum transformation is ArH+H2 O→ArOH+H2 . Non-optimized reaction conditions showed a Faradaic efficiency of 75 % and selective formation of the mono-oxidized product in a 35 % yield. Decomposition of formic acid into CO2 and H2 is a side-reaction.
Collapse
Affiliation(s)
- Alexander M Khenkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Miriam Somekh
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
50
|
Huerta-Aguilar CA, Thangarasu P, Mora JG. Structural influence in the interaction of cysteine with five coordinated copper complexes: Theoretical and experimental studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|