1
|
Paschai Darian LK, Ballmann J, Gade LH. T-shaped 14 Electron Rhodium Complexes: Potential Active Species in C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202416814. [PMID: 39545723 DOI: 10.1002/anie.202416814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Two T-shaped 14-electron rhodium complexes 2 a and 2 b, "framed" and thus stabilized by PNP pincer ligands have been synthesized. The bis(t-butyl)phosphine derived PNPtBu-rhodium complex 2 a was isolated from pentane as the more stable cyclometalated Rh(III) hydrido complex and found to be in equilibrium with the T-shaped 14e- Rh(I) complex 2 aT which itself could be directly crystallized upon change of the solvent. The cyclometallation is suppressed using an adamantyl substituted PNPAd ligand to give the analogous T-shaped Rh(I) species 2 b, stabilized through an agostic interaction with one of the adamantyl C-Hs. Depending on the solvent, complex 2 a reacted with ethylene either by π-coordination (4 a) or C-H activation giving a hydrido-vinyl Rh(III) species 4 b, both isomers being in equilibrium in solution. Complex 2 b was found to reversibly C-H activate arenes to form the hydrido-aryl Rh(III) complexes.
Collapse
Affiliation(s)
- Leon K Paschai Darian
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Li Y, Xu CQ, Chen C, Zhang Y, Liu S, Zhuang Z, Zhang Y, Zhang Q, Li Z, Chen Z, Zheng L, Cheong WC, Wu K, Jiang G, Xiao H, Lian C, Wang D, Peng Q, Li J, Li Y. Carbon-Boosted and Nitrogen-Stabilized Isolated Single-Atom Sites for Direct Dehydrogenation of Lower Alkanes. J Am Chem Soc 2024. [PMID: 39031766 DOI: 10.1021/jacs.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Lower olefins are widely used in the chemical industry as basic carbon-based feedstocks. Here, we report the catalytic system featuring isolated single-atom sites of iridium (Ir1) that can function within the entire temperature range of 300-600 °C and transform alkanes with conversions close to thermodynamics-dictated levels. The high turnover frequency values of the Ir1 system are comparable to those of homogeneous catalytic reactions. Experimental data and theoretical calculations both indicate that Ir1 is the primary catalytic site, while the coordinating C and N atoms help to enhance the activity and stability, respectively; all three kinds of elements cooperatively contribute to the high performance of this novel active site. We have further immobilized this catalyst on particulate Al2O3, and we found that the resulting composite system under mimicked industrial conditions could still give high catalytic performances; in addition, we have also developed and established a new scheme of periodical in situ regeneration specifically for this composite particulate catalyst.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shoujie Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yaoyuan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Qiyang Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Weng-Chon Cheong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Konglin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Lian
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Gordon BM, Parihar A, Hasanayn F, Goldman AS. High Activity and Selectivity for Catalytic Alkane–Alkene Transfer (De)hydrogenation by ( tBuPPP)Ir and the Importance of Choice of a Sacrificial Hydrogen Acceptor. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin M. Gordon
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ashish Parihar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
4
|
Dual electronic effects achieving a high-performance Ni(II) pincer catalyst for CO 2 photoreduction in a noble-metal-free system. Proc Natl Acad Sci U S A 2022; 119:e2119267119. [PMID: 35998222 PMCID: PMC9436338 DOI: 10.1073/pnas.2119267119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A carbazolide-bis(NHC) NiII catalyst (1; NHC, N-heterocyclic carbene) for selective CO2 photoreduction was designed herein by a one-stone-two-birds strategy. The extended π-conjugation and the strong σ/π electron-donation characteristics (two birds) of the carbazolide fragment (one stone) lead to significantly enhanced activity for photoreduction of CO2 to CO. The turnover number (TON) and turnover frequency (TOF) of 1 were ninefold and eightfold higher than those of the reported pyridinol-bis(NHC) NiII complex at the same catalyst concentration using an identical Ir photosensitizer, respectively, with a selectivity of ∼100%. More importantly, an organic dye was applied to displace the Ir photosensitizer to develop a noble-metal-free photocatalytic system, which maintained excellent performance and obtained an outstanding quantum yield of 11.2%. Detailed investigations combining experimental and computational studies revealed the catalytic mechanism, which highlights the potential of the one-stone-two-birds effect.
Collapse
|
5
|
Royle CG, Sotorrios L, Gyton MR, Brodie CN, Burnage AL, Furfari SK, Marini A, Warren MR, Macgregor SA, Weller AS. Single-Crystal to Single-Crystal Addition of H 2 to [Ir( iPr-PONOP)(propene)][BAr F4] and Comparison Between Solid-State and Solution Reactivity. Organometallics 2022; 41:3270-3280. [DOI: 10.1021/acs.organomet.2c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Cameron G. Royle
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Lia Sotorrios
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Matthew R. Gyton
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| | - Claire N. Brodie
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| | - Arron L. Burnage
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | | | - Anna Marini
- Diamond Light Source Ltd, Didcot OX11 0DE, U.K
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Andrew S. Weller
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| |
Collapse
|
6
|
Doyle LR, Galpin MR, Furfari SK, Tegner BE, Martínez-Martínez AJ, Whitwood AC, Hicks SA, Lloyd-Jones GC, Macgregor SA, Weller AS. Inverse Isotope Effects in Single-Crystal to Single-Crystal Reactivity and the Isolation of a Rhodium Cyclooctane σ-Alkane Complex. Organometallics 2022; 41:284-292. [PMID: 35273423 PMCID: PMC8900153 DOI: 10.1021/acs.organomet.1c00639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/15/2022]
Abstract
![]()
The
sequential solid/gas single-crystal to single-crystal reaction
of [Rh(Cy2P(CH2)3PCy2)(COD)][BArF4] (COD = cyclooctadiene) with H2 or
D2 was followed in situ by solid-state 31P{1H} NMR spectroscopy (SSNMR) and ex situ by solution quenching
and GC-MS. This was quantified using a two-step Johnson–Mehl–Avrami–Kologoromov
(JMAK) model that revealed an inverse isotope effect for the second
addition of H2, that forms a σ-alkane complex [Rh(Cy2P(CH2)3PCy2)(COA)][BArF4]. Using D2, a temporal window is determined
in which a structural solution for this σ-alkane complex is
possible, which reveals an η2,η2-binding mode to the Rh(I) center, as supported by periodic density
functional theory (DFT) calculations. Extensive H/D exchange occurs
during the addition of D2, as promoted by the solid-state
microenvironment.
Collapse
Affiliation(s)
- Laurence R. Doyle
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Martin R. Galpin
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - Samantha K. Furfari
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Bengt E. Tegner
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | | | - Adrian C. Whitwood
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Scott A. Hicks
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Guy C. Lloyd-Jones
- Department of Chemistry, University of Edinburgh, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Andrew S. Weller
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
7
|
Medici S, Peana M, Pelucelli A, Zoroddu MA. Rh(I) Complexes in Catalysis: A Five-Year Trend. Molecules 2021; 26:2553. [PMID: 33925725 PMCID: PMC8125654 DOI: 10.3390/molecules26092553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
Rhodium is one of the most used metals in catalysis both in laboratory reactions and industrial processes. Despite the extensive exploration on "classical" ligands carried out during the past decades in the field of rhodium-catalyzed reactions, such as phosphines, and other common types of ligands including N-heterocyclic carbenes, ferrocenes, cyclopentadienyl anion and pentamethylcyclopentadienyl derivatives, etc., there is still lively research activity on this topic, with considerable efforts being made toward the synthesis of new preformed rhodium catalysts that can be both efficient and selective. Although the "golden age" of homogeneous catalysis might seem over, there is still plenty of room for improvement, especially from the point of view of a more sustainable chemistry. In this review, temporally restricted to the analysis of literature during the past five years (2015-2020), the latest findings and trends in the synthesis and applications of Rh(I) complexes to catalysis will be presented. From the analysis of the most recent literature, it seems clear that rhodium-catalyzed processes still represent a stimulating challenge for the metalloorganic chemist that is far from being over.
Collapse
Affiliation(s)
- Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Vienna 2, 07100 Sassari, Italy; (A.P.); (M.A.Z.)
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Vienna 2, 07100 Sassari, Italy; (A.P.); (M.A.Z.)
| | | | | |
Collapse
|
8
|
Johnson A, Royle CG, Brodie CN, Martínez-Martínez AJ, Duckett SB, Weller AS. η 2-Alkene Complexes of [Rh(PONOP- iPr)(L)] + Cations (L = COD, NBD, Ethene). Intramolecular Alkene-Assisted Hydrogenation and Dihydrogen Complex [Rh(PONOP- iPr)(η-H 2)] . Inorg Chem 2021; 60:13903-13912. [PMID: 33570930 PMCID: PMC8456414 DOI: 10.1021/acs.inorgchem.0c03687] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhodium-alkene complexes of the pincer ligand κ3-C5H3N-2,6-(OPiPr2)2 (PONOP-iPr) have been prepared and structurally characterized: [Rh(PONOP-iPr)(η2-alkene)][BArF4] [alkene = cyclooctadiene (COD), norbornadiene (NBD), ethene; ArF = 3,5-(CF3)2C6H3]. Only one of these, alkene = COD, undergoes a reaction with H2 (1 bar), to form [Rh(PONOP-iPr)(η2-COE)][BArF4] (COE = cyclooctene), while the others show no significant reactivity. This COE complex does not undergo further hydrogenation. This difference in reactivity between COD and the other alkenes is proposed to be due to intramolecular alkene-assisted reductive elimination in the COD complex, in which the η2-bound diene can engage in bonding with its additional alkene unit. H/D exchange experiments on the ethene complex show that reductive elimination from a reversibly formed alkyl hydride intermediate is likely rate-limiting and with a high barrier. The proposed final product of alkene hydrogenation would be the dihydrogen complex [Rh(PONOP-iPr)(η2-H2)][BArF4], which has been independently synthesized and undergoes exchange with free H2 on the NMR time scale, as well as with D2 to form free HD. When the H2 addition to [Rh(PONOP-iPr)(η2-ethene)][BArF4] is interrogated using pH2 at higher pressure (3 bar), this produces the dihydrogen complex as a transient product, for which enhancements in the 1H NMR signal for the bound H2 ligand, as well as that for free H2, are observed. This is a unique example of the partially negative line-shape effect, with the enhanced signals that are observed for the dihydrogen complex being explained by the exchange processes already noted.
Collapse
Affiliation(s)
- Alice Johnson
- Chemical Research Laboratories, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Cameron G Royle
- Chemical Research Laboratories, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.,Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Claire N Brodie
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | | | - Simon B Duckett
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Andrew S Weller
- Department of Chemistry, University of York, York YO10 5DD, U.K
| |
Collapse
|
9
|
Yeo A, Sanz CA, Fryzuk MD. Forays into rhodium macrocyclic chemistry stabilized by a P 2N 2 donor set. Activation of dihydrogen and benzene. Dalton Trans 2021; 50:899-907. [PMID: 33351000 DOI: 10.1039/d0dt03688a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the dilithium diamido-diphosphine macrocycle, Li2[N(SiMe2CH2P(Ph)CH2SiMe2)2N] (Li2[P2N2]) with [Rh(COD)Cl]2 generates the dirhodium macrocyclic compound, [P2N2][Rh(COD)]2 (where COD = η4-1,5-cyclooctadiene), wherein both rhodium-COD units are syn to each other and have square planar geometries. While this dirhodium derivative does react with H2, no clean products could be isolated. Upon reaction of Li2[P2N2] with [Rh(COE)2Cl]2 (where COE is η2-cyclooctene), the dilithium-dihodium derivative ([Rh(COE)][P2N2]Li)2(dioxane) forms, which was characterized by single-crystal X-ray analysis and NMR spectroscopy. The cyclooctene derivative reacts with dihydrogen in benzene to generate the dilithium-dirhodium-dihydride complex ([Rh(H)2][P2N2]Li)2(dioxane); also formed is the dilithium-dirhodium-phenylhydride complex ([Rh(C6H5)H][P2N2]Li)2(dioxane) via oxidative addition of a C-H bond of the solvent. The phenyl-hydride is eventually converted to the dihydride derivative via further reaction with H2. This process is complicated by adventitious H2O, which leads to the isolation of the amine-dihydride, Rh[P2N2H](H)2; drying of the H2 eliminates this side product. Nevertheless, careful addition of H2O to ([Rh(COE)][P2N2]Li)2(dioxane) results in protonation of one of the amido units and the formation of the rhodium-amine cyclooctene derivative, Rh[P2N2H](COE), which upon reaction with H2 generates the aforementioned amine-dihydride, Rh[P2N2H](H)2. The mechanism by which dihydrogen and C-H bonds of benzene are activated likely involves initial dissociation of cyclooctene from the 18-electron centers in ([Rh(COE)][P2N2]Li)2(dioxane), followed by H-H and C-H bond activation. The ability of one of the amido units of the P2N2 macrocycle to be protonated is a potentially useful proton storage mechanism and is of interest in other bond activation processes.
Collapse
Affiliation(s)
- Alyssa Yeo
- University of British Columbia, Department of Chemistry, Vancouver, BC, Canada.
| | | | | |
Collapse
|
10
|
Besora M, Maseras F. Computational insights into metal-catalyzed asymmetric hydrogenation. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Zhang X, Wu SB, Leng X, Chung LW, Liu G, Huang Z. N-Bridged Pincer Iridium Complexes for Highly Efficient Alkane Dehydrogenation and the Relevant Linker Effects. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00539] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xin Zhang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Song-Bai Wu
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuebing Leng
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lung Wa Chung
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
12
|
Merz LS, Ballmann J, Gade LH. Phosphines and
N
‐Heterocycles Joining Forces: an Emerging Structural Motif in PNP‐Pincer Chemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
13
|
Budweg S, Junge K, Beller M. Catalytic oxidations by dehydrogenation of alkanes, alcohols and amines with defined (non)-noble metal pincer complexes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00699h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review highlights the latest developments in the field of transition metal-catalysed oxidations, in particular C–C–, C–O– and C–N-bond dehydrogenations.
Collapse
Affiliation(s)
- Svenja Budweg
- Leibniz-Institut für Katalyse e.V
- Rostock 18059
- Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V
- Rostock 18059
- Germany
| | | |
Collapse
|
14
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Zhou X, Malakar S, Zhou T, Murugesan S, Huang C, Emge TJ, Krogh-Jespersen K, Goldman AS. Catalytic Alkane Transfer Dehydrogenation by PSP-Pincer-Ligated Ruthenium. Deactivation of an Extremely Reactive Fragment by Formation of Allyl Hydride Complexes. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoguang Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Tian Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Sathiyamoorthy Murugesan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Carlos Huang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
16
|
Das K, Kumar A. Alkane dehydrogenation reactions catalyzed by pincer-metal complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Nakayama S, Morisako S, Yamashita M. Synthesis and Application of Pyrrole-Based PNP–Ir Complexes to Catalytic Transfer Dehydrogenation of Cyclooctane. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shin Nakayama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, 112-8551 Tokyo, Japan
| | - Shogo Morisako
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
18
|
Higuchi J, Kuriyama S, Eizawa A, Arashiba K, Nakajima K, Nishibayashi Y. Preparation and reactivity of iron complexes bearing anionic carbazole-based PNP-type pincer ligands toward catalytic nitrogen fixation. Dalton Trans 2018; 47:1117-1121. [DOI: 10.1039/c7dt04327a] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Newly prepared iron complexes bearing carbazole-based PNP-type pincer ligands are found to work as catalysts toward nitrogen fixation.
Collapse
Affiliation(s)
- Junichi Higuchi
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Shogo Kuriyama
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Aya Eizawa
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kazuya Arashiba
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kazunari Nakajima
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
19
|
Nolla-Saltiel R, Geer AM, Lewis W, Blake AJ, Kays DL. Dehydrogenation of dimethylamine-borane mediated by Group 1 pincer complexes. Chem Commun (Camb) 2018; 54:1825-1828. [DOI: 10.1039/c7cc08385h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkali metal carbazolido complexes are precatalysts for the dehydrogenation of Me2NH·BH3, where the cation plays a vital role in the reaction outcome.
Collapse
Affiliation(s)
| | - Ana M. Geer
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - William Lewis
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | | | | |
Collapse
|
20
|
Tang X, Jia X, Huang Z. Challenges and opportunities for alkane functionalisation using molecular catalysts. Chem Sci 2017; 9:288-299. [PMID: 29629098 PMCID: PMC5870200 DOI: 10.1039/c7sc03610h] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
The conversion of vast low-value saturated hydrocarbons into valuable chemicals is of great interest.
The conversion of vast low-value saturated hydrocarbons into valuable chemicals is of great interest. Thanks to the progression of organometallic and coordination chemistry, transition metal catalysed C sp3–H bond functionalisation has now become a powerful tool for alkane transformations. Specifically, methods for alkane functionalisation include radical initiated C–H functionalisation, carbene/nitrene insertion, and transition metal catalysed C–H bond activation. This perspective provides a systematic and concise overview of each protocol, highlighting the factors that govern regioselectivity in these reactions. The challenges of the existing catalytic tactics and future directions for catalyst development in this field will be presented.
Collapse
Affiliation(s)
- Xinxin Tang
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| | - Xiangqing Jia
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China .
| |
Collapse
|
21
|
Kumar A, Bhatti TM, Goldman AS. Dehydrogenation of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes. Chem Rev 2017; 117:12357-12384. [DOI: 10.1021/acs.chemrev.7b00247] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Akshai Kumar
- Department
of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Tariq M. Bhatti
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
22
|
Sietzen M, Batke S, Antoni PW, Wadepohl H, Ballmann J. Benzylene-linked [PNP] scaffolds and their cyclometalated zirconium and hafnium complexes. Dalton Trans 2017; 46:5816-5834. [PMID: 28401977 DOI: 10.1039/c7dt00413c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The benzylene-linked [PNP] scaffolds HN(CH2-o-C6H4PPh2)2 ([A]H) and HN(C6H4-o-CH2PPh2)2 ([B]H) have been used for the synthesis of zirconium and hafnium complexes. For both ligands, the dimethylamides [A]M(NMe2)3 ([A]1-M) and [B]M(NMe2)3 ([B]1-M) were prepared and converted to the iodides [A]MI3 ([A]2-M) and [B]MI3 ([B]2-M) (M = Zr, Hf). Starting from these iodides, the corresponding benzyl derivatives [A]MBn3 ([A]3-M) and [B]MBn3 ([B]3-M) (M = Zr, Hf) were obtained via reaction with Bn2Mg(OEt2)2. For zirconium, the benzylic ligand positions in [A]3-Zr and [B]3-Zr were found to cyclometalate readily, which led to the corresponding κ4-[PCNP]ZrBn2 complexes [A]4-Zr and [B]4-Zr. As these complexes failed to hydrogenate cleanly, cyclometalated derivatives with only one alkyl substituent were targeted and the mixed benzyl chlorides κ4-[PCNP]MBnCl ([B]5-M, M = Zr, Hf) were obtained in the case of ligand [B]. Upon hydrogenation of [B]5-Zr, the η6-tolyl complex [B]Zr(η6-C7H8)Cl ([B]6-Zr) was generated cleanly, but the corresponding hafnium complex [B]5-Hf was found to decompose unselectively in the presence of H2. Using a closely related carbazole-based [PNP] ligand, Gade and co-workers have shown recently that zirconium η6-arene complexes similar to [B]6-Zr may serve as zirconium(ii) synthons, namely when reacted with 2,6-Dipp-NC (L) or pyridine (py). Both these substrates were shown to react cleanly with [B]6-Zr, which led to the formation of the bis-isocyanide complex [B]ZrCl(L)2 ([B]7-Zr) and the 2,2'-bipyridine derivative [B]ZrCl(bipy) ([B]8-Zr), respectively. Upon reaction of [B]Zr(η6-C7H8)Cl ([B]6-Zr) with NaBEt3H, the cyclometalated derivative κ4-[PCNP]Zr(η6-C7H8) ([B]9-Zr) was isolated. In an attempt to synthesise terminal hydrides, complexes [A]MI3 ([A]2-M) were treated with KBEt3H, which led to the isolation of the cyclometalated hydrido complexes κ4-[PCNP]M(H)(κ3-Et3BH) ([A]10-M; M = Zr, Hf) featuring a κ3-bound triethyl borohydride moiety.
Collapse
Affiliation(s)
- Malte Sietzen
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Charette BJ, Ritch JS. A Selenium-Containing Diarylamido Pincer Ligand: Synthesis and Coordination Chemistry with Group 10 Metals. Inorg Chem 2016; 55:6344-50. [DOI: 10.1021/acs.inorgchem.6b01203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bronte J. Charette
- Department of Chemistry, The University of Winnipeg, 515 Portage
Avenue, Winnipeg, Manitoba R3J 2N6, Canada
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jamie S. Ritch
- Department of Chemistry, The University of Winnipeg, 515 Portage
Avenue, Winnipeg, Manitoba R3J 2N6, Canada
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|