1
|
Stopper D, Hansen-Goos H, Roth R, Evans R. Remnants of the disappearing critical point in chain-forming patchy fluids. J Chem Phys 2020; 152:111101. [DOI: 10.1063/1.5141059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Hendrik Hansen-Goos
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Robert Evans
- H. H. Wills Physics Laboratory, University of Bristol, Royal Fort, Bristol BS8 ITL, United Kingdom
| |
Collapse
|
2
|
Febra SA, Aasen A, Adjiman CS, Jackson G, Galindo A. Intramolecular bonding in a statistical associating fluid theory of ring aggregates. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1671619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- S. A. Febra
- Department of Chemical Engineering, Centre for Process Systems Engineering, Institute for Molecular Science and Engineering, Imperial College London, London, UK
| | - A. Aasen
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - C. S. Adjiman
- Department of Chemical Engineering, Centre for Process Systems Engineering, Institute for Molecular Science and Engineering, Imperial College London, London, UK
| | - G. Jackson
- Department of Chemical Engineering, Centre for Process Systems Engineering, Institute for Molecular Science and Engineering, Imperial College London, London, UK
| | - A. Galindo
- Department of Chemical Engineering, Centre for Process Systems Engineering, Institute for Molecular Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
3
|
Espinosa JR, Garaizar A, Vega C, Frenkel D, Collepardo-Guevara R. Breakdown of the law of rectilinear diameter and related surprises in the liquid-vapor coexistence in systems of patchy particles. J Chem Phys 2019; 150:224510. [PMID: 31202247 DOI: 10.1063/1.5098551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The phase diagram of molecular or colloidal systems depends strongly on the range and angular dependence of the interactions between the constituent particles. For instance, it is well known that the critical density of particles with "patchy" interactions shifts to lower values as the number of patches is decreased [see Bianchi et al. Phys. Rev. Lett. 97, 168301 (2006)]. Here, we present simulations that show that the phase behavior of patchy particles is even more interesting than had been appreciated. In particular, we find that, upon cooling below the critical point, the width of the liquid-vapor coexistence region of a system of particles with tetrahedrally arranged patches first increases, then decreases, and finally increases again. In other words, this system exhibits a doubly re-entrant liquid-vapor transition. As a consequence, the system exhibits a very large deviation from the law of rectilinear diameter, which assumes that the critical density can be obtained by linear extrapolation of the averages of the densities of the coexisting liquid and vapor phases. We argue that the unusual behavior of this system has the same origin as the density maximum in liquid water and is not captured by the Wertheim theory. The Wertheim theory also cannot account for our observation that the phase diagram of particles with three patches depends strongly on the geometrical distribution of the patches and on the degree to which their position on the particle surface is rigidly constrained. However, the phase diagram is less sensitive to small angular spreads in the patch locations. We argue that the phase behavior reported in this paper should be observable in experiments on patchy colloids and may be relevant for the liquid-liquid equilibrium in solutions of properly functionalized dendrimers.
Collapse
Affiliation(s)
- Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
4
|
Rovigatti L, Russo J, Romano F. How to simulate patchy particles ⋆. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:59. [PMID: 29748868 DOI: 10.1140/epje/i2018-11667-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Patchy particles is the name given to a large class of systems of mesoscopic particles characterized by a repulsive core and a discrete number of short-range and highly directional interaction sites. Numerical simulations have contributed significantly to our understanding of the behaviour of patchy particles, but, although simple in principle, advanced simulation techniques are often required to sample the low temperatures and long time-scales associated with their self-assembly behaviour. In this work we review the most popular simulation techniques that have been used to study patchy particles, with a special focus on Monte Carlo methods. We cover many of the tools required to simulate patchy systems, from interaction potentials to biased moves, cluster moves, and free-energy methods. The review is complemented by an educationally oriented Monte Carlo computer code that implements all the techniques described in the text to simulate a well-known tetrahedral patchy particle model.
Collapse
Affiliation(s)
- Lorenzo Rovigatti
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185, Roma, Italy.
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185, Roma, Italy.
| | - John Russo
- School of Mathematics, University of Bristol, BS8 1TW, Bristol, UK
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172, Venezia Mestre, Italy
| |
Collapse
|
5
|
Audus DJ, Starr FW, Douglas JF. Valence, loop formation and universality in self-assembling patchy particles. SOFT MATTER 2018; 14:1622-1630. [PMID: 29411842 PMCID: PMC5944849 DOI: 10.1039/c7sm02419c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patchy particles have emerged as an attractive model to mimic phase separation and self-assembly of globular proteins solutions, colloidal patchy particles, and molecular fluids where directional interactions are operative. In our previous work, we extensively explored the coupling of directional and isotropic interactions on both the phase separation and self-assembly in a system of patchy particles with five spots. Here, we extend this work to consider different patch valences and isotropic interaction strengths with an emphasis on self-assembly. Although the location of self-assembly transition lines in the temperature-density plane depend on a number of parameters, we find universal behavior of cluster size that is dependent only on the probability of a spot being bound, the patch valence, and the density. Using these principles, we quantify both the mass distribution and the shape for all clusters, as well as clusters containing loops. Following the logical implications of these results, combined with a simplified version of a mean-field theory that incorporates Flory-Stockmayer theory, we find a universal curve for the temperature dependence of cluster mass and a universal curve for the fraction of clusters that contain loops. As the curves are dependent on the particle valence, such results provide a method for parameterizing patchy particle models using experimental data.
Collapse
Affiliation(s)
- Debra J Audus
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | |
Collapse
|
6
|
Marshall BD. A theory for the effect of patch/non-patch attractions on the self-assembly of patchy colloids. SOFT MATTER 2017; 13:6506-6514. [PMID: 28890959 DOI: 10.1039/c7sm01263b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we develop a thermodynamic perturbation theory to describe the self-assembly of patchy colloids which exhibit both patch-patch attractions as well as patch/non-patch attractions. That is, patches attract other patches as well as the no patch region (we call this region Ψ). In general, the patch-patch and patch-Ψ attractions operate on different energy scales allowing for a competition between different modes of attraction. This competition may result in anomalous thermodynamic properties. As an application, we tune the patch parameters to reproduce the liquid density (suitably scaled) maximum of water. It is then shown that the liquid branch of the colloids phase diagram has liquid densities consistent with both saturated and super-cooled liquid water. Finally, it is shown that the colloids reproduce water's anomalous minimum in isothermal compressibility and negative volume expansivity.
Collapse
Affiliation(s)
- Bennett D Marshall
- ExxonMobil Research and Engineering, 22777 Springwoods Village Parkway, Spring, TX 77389, USA.
| |
Collapse
|
7
|
Porter CL, Crocker JC. Directed assembly of particles using directional DNA interactions. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
|
9
|
Bianchi E, Capone B, Coluzza I, Rovigatti L, van Oostrum PDJ. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Phys Chem Chem Phys 2017; 19:19847-19868. [DOI: 10.1039/c7cp03149a] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artistic representation of limited valance units consisting of a soft core (in blue) and a small number of flexible bonding patches (in orange).
Collapse
Affiliation(s)
- Emanuela Bianchi
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Institute for Theoretical Physics
| | - Barbara Capone
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Dipartimento di Scienze
| | - Ivan Coluzza
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
| | - Lorenzo Rovigatti
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Rudolf Peierls Centre for Theoretical Physics
| | - Peter D. J. van Oostrum
- Department of Nanobiotechnology
- Institute for Biologically Inspired Materials
- University of Natural Resources and Life Sciences
- A-1190 Vienna
- Austria
| |
Collapse
|
10
|
Seiferling F, de las Heras D, Telo da Gama MM. Percolation in binary and ternary mixtures of patchy colloids. J Chem Phys 2016; 145:074903. [DOI: 10.1063/1.4960808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Felix Seiferling
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Daniel de las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Margarida M. Telo da Gama
- Departamento de Física e Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon P-1749-016, Portugal
| |
Collapse
|
11
|
de Las Heras D, da Gama MMT. Temperature (de)activated patchy colloidal particles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244008. [PMID: 27115118 DOI: 10.1088/0953-8984/28/24/244008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim's first order perturbation theory, and use Flory-Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation.
Collapse
Affiliation(s)
- Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|