1
|
Lai YK, Opalski AS, Garstecki P, Derzsi L, Guzowski J. A double-step emulsification device for direct generation of double emulsions. SOFT MATTER 2022; 18:6157-6166. [PMID: 35770691 DOI: 10.1039/d2sm00327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In microfluidic step emulsification, the size of droplets generated in the dripping regime is predominantly determined by the nozzle's height and only weakly depends on the applied flow rates or liquid properties. While the generation of monodisperse emulsions at high throughput using step emulsifiers has been well established, the generation of double emulsions, i.e., liquid core-shell structures, is still challenging. Here, we demonstrate a novel double-step emulsification method for the direct generation of multi-core double-emulsions and provide a predictive model for the number of cores. While the mechanism of the formation of the core droplets or empty shell droplets follows the well-established scenario of simple step emulsification, the formation of double-emulsion droplets is strongly affected by the presence of the cores. Passing of the cores through the narrowing neck of the shell postpones shell pinch-off. In particular, we demonstrate that our system can be used for the generation of arbitrary large, tightly packed droplet clusters consisting of a controllable number of droplets. Finally, we discuss the options of upscaling the system for high-throughput generation of tailored double emulsions.
Collapse
Affiliation(s)
- Yu-Kai Lai
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Adam S Opalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Ladislav Derzsi
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
He S, Joseph N, Feng S, Jellicoe M, Raston CL. Application of microfluidic technology in food processing. Food Funct 2021; 11:5726-5737. [PMID: 32584365 DOI: 10.1039/d0fo01278e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microfluidic technology is interdisciplinary with a diversity of applications including in food processing. The rapidly growing global population demands more advanced technologies in food processing to produce more functional and safer food, and for such processing microfluidic devices are a popular choice. This review critically critiques the state-of-the-art designs of microfluidic devices and their applications in food processing, and identifies the key research trends and future research directions for maximizing the value of microfluidic technology. Capillary, planar, and terrace droplet generation systems are currently used in the design of microfluidic devices, each with their strengths and weaknesses as applied in food processing, for emulsification, food safety measurements, and bioactive compound extraction. Conventional channel-based microfluidic devices are prone to clogging, and have high labor costs and low productivity, and their "directional pressure" restricts scaling-up capabilities. These disadvantages can be overcome by using "inside-out centrifugal force" and the new generation continuous flow thin-film microfluidic Vortex Fluidic Device (VFD) which facilitates translating laboratory processing into commercial products. Also highlighted is controlling protein-polysaccharide interactions and the applications of the produced ingredients in food formulations as targets for future development in the field.
Collapse
Affiliation(s)
- Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China. and Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
3
|
Liu Z, Duan C, Jiang S, Zhu C, Ma Y, Fu T. Microfluidic step emulsification techniques based on spontaneous transformation mechanism: A review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Postek W, Kaminski TS, Garstecki P. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample. LAB ON A CHIP 2017; 17:1323-1331. [PMID: 28271118 DOI: 10.1039/c7lc00014f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel geometry of microfluidic channels that allows us to passively generate monodisperse emulsions of hundreds of droplets smaller than 1 nL from collections of larger (ca. 0.4 μL) mother droplets. We introduce a new microfluidic module for the generation of droplets via passive break-up at a step. The module alleviates a common problem in step emulsification with efficient removal of the droplets from the vicinity of the step. In our solution, the droplets are pushed away from the step by a continuous liquid that bypasses the mother droplets via specially engineered bypasses that lead to the step around the main channel. We show that the bypasses tighten the distribution of volume of daughter droplets and eliminate subpopulations of daughter droplets. Clearing away the just produced droplets from the vicinity of the step provides for similar conditions of break-up for every subsequent droplet and, consequently, leads to superior monodispersity of the generated emulsions. Importantly, this function is realized autonomously (passively) in a protocol in which only a sequence of large mother droplets is forced through the module. Our system features the advantage of step emulsification systems in that the volumes of the generated droplets depend very weakly on the rate of flow through the module - an increase in the flow rate by 300% causes only a slight increase of the average diameter of generated droplets by less than 5%. We combined our geometry with a simple T-junction and a simple trap-based microdroplet dilutor to produce a collection of libraries of droplets of gradually changing and known concentrations of a sample. The microfluidic system can be operated with only two syringe pumps set at constant rates of flow during the experiment.
Collapse
Affiliation(s)
- W Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - T S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - P Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
5
|
Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. LAB ON A CHIP 2016; 17:34-75. [PMID: 27841886 DOI: 10.1039/c6lc01018k] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems. Methods for droplet generation can be either passive or active, where the former generates droplets without external actuation, and the latter makes use of additional energy input in promoting interfacial instabilities for droplet generation. A unified physical understanding of both passive and active droplet generation is beneficial for effectively developing new techniques meeting various demands arising from applications. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included in this review is the contrast among different approaches of either passive or active nature.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Kahkeshani S, Di Carlo D. Drop formation using ferrofluids driven magnetically in a step emulsification device. LAB ON A CHIP 2016; 16:2474-80. [PMID: 27250530 DOI: 10.1039/c6lc00645k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present a microfluidic droplet generation technique, where instead of pumps, only magnetic field gradient strength adjusted by the position of an external magnet is used for controllable emulsification of ferrofluid containing solutions. Uniform droplet generation at frequencies O(1-100) Hz per channel for long periods of time (10s of minutes) were easily achieved. In this method, adding magnetic nanoparticles (10 nm) into aqueous solutions imparts a magnetic body force on the fluid in the presence of an external magnetic field gradient. Consequently, the aqueous fluid moves toward the position of an external magnet and towards a junction with a larger width and height oil filled reservoir. Emulsification occurs at the junction due to a rapid change in surface tension forces due to the abrupt change in channel height. Droplet generation rate could be controlled by adjusting surface tension/viscosity, number of channels, and strength of the magnetic force. The geometry of the channel, rather than flow rates or magnetic force, plays the dominant role in defining the droplet size. In addition, reagents mixed with ferrofluids could also be introduced from two or more separate inlets and mixed prior to emulsification as they move toward the step driven by magnetic force. Mixing reagents on chip and forming droplets all within a small foot-print defined by movement of an external magnet is a unique feature of this method suitable for point-of-care diagnostics and other bioengineering applications.
Collapse
Affiliation(s)
- Soroush Kahkeshani
- Department of Bioengineering, University of California, Los Angeles, CA 90024, USA.
| | | |
Collapse
|