1
|
Li H, Tolmachev D, Batys P, Sammalkorpi M, Lutkenhaus JL. Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes. Macromolecules 2025; 58:292-303. [PMID: 39831290 PMCID: PMC11741136 DOI: 10.1021/acs.macromol.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature (T g). Except for glycerol, all alcohol solvents yield PECs with detectable T g's and plasticization behavior. Furthermore, a linear relationship for 1/T g and the natural logarithm of the number of hydroxyl groups to intrinsic ion pair ratio [ln(n hydroxyl/n intrinsic-ion-pair)] is found. This result is significant because prior work demonstrated the relationship only for water and no other solvents. All-atom molecular dynamics (MD) simulations analyze the ability of the solvent to form hydrogen bonds via the solvent's OH groups to the PAA, revealing that the solvent molecule size and available hydroxyl groups govern the change in the glass transition. Overall, the clear dependence of a PEC's glass transition on the solvent's chemical structure provides a simple guideline for predicting their relationship.
Collapse
Affiliation(s)
- Hongwei Li
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, Texas 77843, United States
| | - Dmitry Tolmachev
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
2
|
Liang ZX, Chen HD, Hu CK, Fang YX, Fang YP, Lu CX, Wang J, Mi L, Chen XC. Microporous Polyelectrolyte Complexes by Hydroplastic Foaming. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1892-1901. [PMID: 38192235 DOI: 10.1021/acs.langmuir.3c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Polyelectrolyte complexes (PECs) have emerged as an attractive category of materials for their water processability and some similarities to natural biopolymers. Herein, we employ the intrinsic hydroplasticity of PEC materials to enable the generation of porous structures with the aid of gas foaming. Such foamable materials are fabricated by simply mixing polycation, polyanion, and a UV-initiated chemical foaming agent in an aqueous solution, followed by molding into thin films. The gas foaming of the PEC films can be achieved upon exposure to UV illumination under water, where the films are plasticized and the gaseous products from the photolysis of foaming agents afford the formation, expanding, and merging of numerous bubbles. The porosity and morphology of the resulting porous films can be customized by tuning film composition, foaming conditions, and especially the degree of plasticizing effect, illustrating the high flexibility of this hydroplastic foaming method. Due to the rapid initiation of gas foaming, the present method enables the formation of porous structures via an instant one-step process, much more efficient than those existing strategies for porous PEC materials. More importantly, such a pore-forming mechanism might be extended to other hydroplastic materials (e.g., biopolymers) and help to yield hydroplasticity-based processing strategies.
Collapse
Affiliation(s)
- Zi-Xuan Liang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hao-Dong Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chun-Kui Hu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yi-Xuan Fang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - You-Peng Fang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chun-Xin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jing Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Mi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
3
|
Khavani M, Batys P, Lalwani SM, Eneh CI, Leino A, Lutkenhaus JL, Sammalkorpi M. Effect of Ethanol and Urea as Solvent Additives on PSS–PDADMA Polyelectrolyte Complexation. Macromolecules 2022; 55:3140-3150. [PMID: 35492577 PMCID: PMC9052311 DOI: 10.1021/acs.macromol.1c02533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Indexed: 11/28/2022]
Abstract
![]()
The effect of urea
and ethanol additives on aqueous solutions of
poly(styrenesulfonate) (PSS), poly(diallyldimethylammonium)
(PDADMA), and their complexation interactions are examined here via
molecular dynamics simulations, interconnected laser Doppler velocimetry,
and quartz crystal microbalance with dissipation. It is found that
urea and ethanol have significant, yet opposite influences on PSS
and PDADMA solvation and interactions. Notably, ethanol is systematically
depleted from solvating the charge groups but condenses at the hydrophobic
backbone of PSS. As a consequence of the poorer solvation environment
for the ionic groups, ethanol significantly increases the extent of
counterion condensation. On the other hand, urea readily solvates
both polyelectrolytes and replaces water in solvation. For PSS, urea
causes disruption of the hydrogen bonding of the PSS headgroup with
water. In PSS–PDADMA complexation, these differences influence
changes in the binding configurations relative to the case of pure
water. Specifically, added ethanol leads to loosening of the complex
caused by the enhancement of counterion condensation; added urea pushes
polyelectrolyte chains further apart because of the formation of a
persistent solvation shell. In total, we find that the effects of
urea and ethanol rise from changes in the microscopic-level solvation
environment and conformation resulting from solvating water being
replaced by the additive. The differences cannot be explained purely
via considering relative permittivity and continuum level electrostatic
screening. Taken together, the findings could bear significance in
tuning polyelectrolyte materials’ mechanical and swelling characteristics
via solution additives.
Collapse
Affiliation(s)
- Mohammad Khavani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | | | | | - Anna Leino
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | | | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
4
|
Yuan W, Weng GM, Lipton J, Li CM, Van Tassel PR, Taylor AD. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv Colloid Interface Sci 2020; 282:102200. [PMID: 32585489 DOI: 10.1016/j.cis.2020.102200] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Layer-by-layer (LbL) assembly is a nanoscale technique with great versatility, simplicity and molecular-level processing of various nanoscopic materials. Weak polyelectrolytes have been used as major building blocks for LbL assembly providing a fundamental and versatile tool to study the underlying mechanisms and practical applications of LbL assembly due to its pH-responsive charge density and molecular conformation. Because of high-density uncompensated charges and high-chain mobility, weak polyelectrolyte exponential multilayer growth is considered one of the fastest developing areas for organized molecular films. In this article, we systematically review the current status and developments of weak polyelectrolyte-based multilayers including all-weak-polyelectrolyte multilayers, weak polyelectrolytes/other components (e.g. strong polyelectrolytes, neutral polymers, and nanoparticles) multilayers, and exponentially grown weak polyelectrolyte multilayers. Several key aspects of weak polyelectrolytes are highlighted including the pH-controllable properties, the responsiveness to environmental pH, and synergetic functions obtained from weak polyelectrolyte/other component multilayers. Throughout this review, useful applications of weak polyelectrolyte-based multilayers in drug delivery, tunable biointerfaces, nanoreactors for synthesis of nanostructures, solid state electrolytes, membrane separation, and sensors are highlighted, and promising future directions in the area of weak polyelectrolyte-based multilayer assembly such as fabrication of multi-responsive materials, adoption of unique building blocks, investigation of internal molecular-level structure and mechanism of exponentially grown multilayers, and exploration of novel biomedical and energy applications are proposed.
Collapse
|
5
|
Gong X, Zhang J, Jiang S. Ionic liquid-induced nanoporous structures of polymer films. Chem Commun (Camb) 2020; 56:3054-3057. [DOI: 10.1039/c9cc08768k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoporous polymer thin films can be fabricated using strong polyelectrolyte pairs in ionic liquid aqueous solutions.
Collapse
Affiliation(s)
- Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- China
- State Key Laboratory of Polymer Materials Engineering
| | - Jixi Zhang
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Shaohua Jiang
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
6
|
Parveen N, Jana PK, Schönhoff M. Viscoelastic Properties of Polyelectrolyte Multilayers Swollen with Ionic Liquid Solutions. Polymers (Basel) 2019; 11:E1285. [PMID: 31374899 PMCID: PMC6722675 DOI: 10.3390/polym11081285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022] Open
Abstract
Polyelectrolyte multilayers (PEM) obtained by layer-by-layer assembly can be doped with ionic liquid (IL) via the swelling of the films with IL solutions. In order to examine the mechanical properties of IL-containing PEM, we implement a Kelvin-Voigt model to obtain thickness, viscosity and elastic modulus from the frequency and dissipation shifts determined by a dissipative quartz crystal microbalance (QCM-D). We analyze the changes in the modeled thickness and viscoelasticity of PEI(PSS/PADMAC)4PSS and PEI(PSS/PAH)4PSS multilayers upon swelling by increasing the concentration of either 1-Ethyl-3-methylimidazolium chloride or 1-Hexyl-3-methylimidazolium chloride, which are water soluble ILs. The results show that the thickness of the multilayers changes monotonically up to a certain IL concentration, whereas the viscosity and elasticity change in a non-monotonic fashion with an increasing IL concentration. The changes in the modeled parameters can be divided into three concentration regimes of IL, a behavior specific to ILs (organic salts), which does not occur with swelling by simple inorganic salts such as NaCl. The existence of the regimes is attributed to a competition of the hydrophobic interactions of large hydrophobic ions, which enhance the layer stability at a low salt content, with the electrostatic screening, which dominates at a higher salt content and causes a film softening.
Collapse
Affiliation(s)
- Nagma Parveen
- Institute of Physical Chemistry, University of Muenster, 48149 Münster, Germany.
- NRW Graduate School of Chemistry, University of Muenster, 48149 Münster, Germany.
| | - Pritam Kumar Jana
- Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Muenster, 48149 Münster, Germany.
| |
Collapse
|
7
|
Affiliation(s)
- Hadi M. Fares
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Qifeng Wang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
8
|
Duan Y, Wang C, Zhao M, Vogt BD, Zacharia NS. Mechanical properties of bulk graphene oxide/poly(acrylic acid)/poly(ethylenimine) ternary polyelectrolyte complex. SOFT MATTER 2018; 14:4396-4403. [PMID: 29781004 DOI: 10.1039/c8sm00176f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ternary complexes formed in a single pot process through the mixing of cationic (branched polyethylenimine, BPEI) and anionic (graphene oxide, GO, and poly(acrylic acid), PAA) aqueous solutions exhibit superior mechanical performance in comparison to their binary analogs. The composition of the ternary complex can be simply tuned through the composition of the anionic solution, which influences the water content and mechanical properties of the complex. Increasing the PAA content in the complex decreases the overall water content due to improved charge compensation with the BPEI, but this change also significantly improves the toughness of the complex. Ternary complexes containing ≤32 wt% PAA were too brittle to generate samples for tensile measurements, while extension in excess of 250% could be reached with 57 wt% PAA. From this work, the influence of GO and PAA on the mechanical properties of GO/PAA/BPEI complexes were elucidated with GO sheets acting to restrain the viscous flow and improve the mechanical strength at low loading (<12.6 wt%) and PAA more efficiently complexes with BPEI than GO to generate a less swollen and stronger network. This combination overcomes the brittle nature of GO-BPEI complexes and viscous creep of PAA-BPEI complexes. Ternary nanocomposite complexes appear to provide an effective route to toughen and strengthen bulk polyelectrolyte complexes.
Collapse
Affiliation(s)
- Yipin Duan
- Department of Polymer Engineering, University of Akron, 250 S. Forge St, Akron, OH 44325, USA.
| | | | | | | | | |
Collapse
|
9
|
Lee MY, Lee JH, Chung JW, Kwak SY. Hydrophilic and positively charged polyethylenimine-functionalized mesoporous magnetic clusters for highly efficient removal of Pb(II) and Cr(VI) from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:740-748. [PMID: 29161676 DOI: 10.1016/j.jenvman.2017.10.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
We develop mesoporous magnetic clusters (MMCs) functionalized with hydrophilic branched polyethylenimine (b-PEI), later called b-MG, and MMCs functionalized with positively charged b-PEI (p-MG). These materials efficiently remove Pb(II) and Cr(VI) from wastewater. Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and nitrogen adsorption-desorption analysis results clearly indicate that hydrophilic b-PEI and positively charged b-PEI are successfully attached to the MMC surfaces. Wide-angle X-ray diffraction, high-resolution transmission electron microscopy, and field-emission scanning electron microscopy analyses confirm that the crystal structures and morphologies of the MMCs are maintained well even when wet chemical modification processes are used to introduce hydrophilic b-PEI and positively charged b-PEI to the MMC surfaces. Langmuir and Sips isotherm models are applied to describe Pb(II) adsorption behavior of the b-MG and Cr(VI) adsorption behavior of the p-MG. The isotherm models indicate that the maximum adsorption capacities of b-MG and p-MG, respectively, are 216.3 and 334.1 mg g-1, respectively. These are higher than have previously been found for other adsorbents. In reusability tests, using magnetic separation and controlling the pH, the Pb(II) recovery efficiency of the b-MG is 95.6% and the Cr(VI) recovery efficiency of the p-MG is 68.0% even after the third cycle.
Collapse
Affiliation(s)
- Min Young Lee
- Department of Materials Science and Engineering, and Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ji Hwan Lee
- Department of Materials Science and Engineering, and Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jae Woo Chung
- Department of Organic Materials and Fiber Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, South Korea.
| | - Seung-Yeop Kwak
- Department of Materials Science and Engineering, and Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
10
|
Song Y, Meyers KP, Gerringer J, Ramakrishnan RK, Humood M, Qin S, Polycarpou AA, Nazarenko S, Grunlan JC. Fast Self‐Healing of Polyelectrolyte Multilayer Nanocoating and Restoration of Super Oxygen Barrier. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/18/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Yixuan Song
- Department of Materials Science and Engineering Texas A&M University College Station TX 77843‐3003 USA
| | - Kevin P. Meyers
- School of Polymers and High Performance Materials University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Joseph Gerringer
- Department of Chemistry Texas A&M University College Station TX 77843‐3012 USA
| | - Ramesh K. Ramakrishnan
- School of Polymers and High Performance Materials University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Mohammad Humood
- Department of Mechanical Engineering Texas A&M University College Station TX 77843‐3123 USA
| | - Shuang Qin
- Department of Materials Science and Engineering Texas A&M University College Station TX 77843‐3003 USA
| | - Andreas A. Polycarpou
- Department of Mechanical Engineering Texas A&M University College Station TX 77843‐3123 USA
| | - Sergei Nazarenko
- School of Polymers and High Performance Materials University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Jaime C. Grunlan
- Department of Materials Science and Engineering Texas A&M University College Station TX 77843‐3003 USA
- Department of Chemistry Texas A&M University College Station TX 77843‐3012 USA
- Department of Mechanical Engineering Texas A&M University College Station TX 77843‐3123 USA
| |
Collapse
|
11
|
Chan EP, Lee SC. Thickness-dependent swelling of molecular layer-by-layer polyamide nanomembranes. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Edwin P. Chan
- Materials Science and Engineering Division; National Institute of Standards and Technology; Gaithersburg Maryland 20899-8542
| | - Stephen C. Lee
- Materials Science and Engineering Division; National Institute of Standards and Technology; Gaithersburg Maryland 20899-8542
- Montgomery College; 20200 Observation Drive Germantown Maryland 20876
| |
Collapse
|
12
|
Zhang Y, Li F, Valenzuela LD, Sammalkorpi M, Lutkenhaus JL. Effect of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)–Poly(acrylic acid) Complexes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00742] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Maria Sammalkorpi
- Department
of Chemistry, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | | |
Collapse
|
13
|
Gu Y, Weinheimer EK, Ji X, Wiener CG, Zacharia NS. Response of Swelling Behavior of Weak Branched Poly(ethylene imine)/Poly(acrylic acid) Polyelectrolyte Multilayers to Thermal Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6020-7. [PMID: 27232180 DOI: 10.1021/acs.langmuir.6b00206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Weak polyelectrolyte multilayers (PEMs) prepared by the layer-by-layer technique have attracted a great deal of attention as smart responsive materials for biological and other applications in aqueous medium, but their dynamic behavior as a function of exposure to a wide temperature range is still not well understood. In this work, the thermally dependent swelling behavior of PEMs consisting of branched poly(ethylenimine) and poly(acrylic acid) is studied by temperature controlled in situ spectroscopic ellipsometry. Because of diffusion and interpenetration of polyelectrolytes during film deposition, the PEMs densify with increasing bilayer number, which further affects their water uptake behavior. Upon heating to temperatures below 60 °C, the worsened solvent quality of the PEM in water causes deswelling of the PEMs. However, once heated above this critical temperature, the hydrogen bonds within the PEMs are weakened, which allows for chain rearrangement within the film upon cooling, resulting in enhanced water uptake and increased film thickness. The current work provides fundamental insight into the unique dynamic behavior of weak polyelectrolyte multilayers in water at elevated temperatures.
Collapse
Affiliation(s)
- Yuanqing Gu
- Department of Polymer Engineering, University of Akron , Akron, Ohio 44325, United States
| | - Emily K Weinheimer
- Department of Polymer Engineering, University of Akron , Akron, Ohio 44325, United States
| | - Xiang Ji
- Department of Polymer Engineering, University of Akron , Akron, Ohio 44325, United States
| | - Clinton G Wiener
- Department of Polymer Engineering, University of Akron , Akron, Ohio 44325, United States
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
14
|
Ghoussoub YE, Schlenoff JB. Janus Nanofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3623-9. [PMID: 27054378 DOI: 10.1021/acs.langmuir.6b00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To make a two-dimensional Janus object, the perfluorinated anionic polyelectrolyte Nafion was adsorbed to the surface of ultrathin films of polyelectrolyte complex. Nafion changed the wetting characteristics of the polyelectrolyte multilayer (PEMU) of poly(diallyldimethylammonium) and poly(styrenesulfonate) from hydrophilic to hydrophobic. PEMUs assembled on aluminum substrates and terminated with Nafion could be released by exposure to alkali solution, producing free-floating films in the 100 nm thickness regime. Water contact angle measurements showed a strong difference in hydrophilicity between the two sides of this Janus film, which was further characterized using atomic force microscopy and X-ray photoelectron spectroscopy (XPS). XPS revealed different fluorine contents on both sides of the PEMU, which could be translated to a Nafion gradient through the film. Fourier transform infrared spectroscopy showed the Nafion-containing films were much more resistant to decomposition by high salt concentration.
Collapse
Affiliation(s)
- Yara E Ghoussoub
- Department of Chemistry and Biochemistry, The Florida State University , Tallahassee, Florida 32306-4390, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University , Tallahassee, Florida 32306-4390, United States
| |
Collapse
|