1
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
McCauley PJ, Kumar S, Calabrese MA. Criteria Governing Rod Formation and Growth in Nonionic Polymer Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11676-11687. [PMID: 34601878 DOI: 10.1021/acs.langmuir.1c01570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembled wormlike micelles (WLMs) are widely studied in small-molecule surfactants due to their unique ability to break and recombine; however, less is known about the structure and dynamics of nonionic polymer WLMs. Here, solutions of seven triblock poloxamers, composed of poly(propylene oxide) (PPO) midblocks and poly(ethylene oxide) (PEO) end blocks, are comprehensively examined to determine the role of poloxamer composition, temperature, and inorganic salt type and concentration on rod formation and subsequent elongation into WLMs. Phase separation and sphere-to-rod transition temperatures were quantified via cloud point measurements and shear rheology, respectively, and corroborated with small-angle neutron scattering (SANS). The local microstructure of resulting rodlike micelles is remarkably similar across poloxamer type and sodium fluoride (NaF) or sodium chloride (NaCl) content. Salt addition reduces transition temperatures, with the most pronounced effects for poloxamers with high PEO molecular weights and PEO fractions. Between these two temperatures, several poloxamers elongate into WLMs, where shear rheology detects increases in viscosity up to 6 orders of magnitude. Despite similar local microstructures, poloxamer identity and salt content impact micelle growth substantially, where large poloxamers with lower PEO fractions exhibit the highest viscosities and longest relaxation times. While sodium fluoride has little impact on micelle growth, increasing NaCl concentration dramatically increases the WLM viscosity and relaxation time. This result is explained by different interactions of each salt with the micelle: whereas NaF interacts primarily with PEO chains, NaCl may also partition to the PPO/PEO interface in low levels, increasing micelle surface tension, scission energy, and contour length.
Collapse
Affiliation(s)
- Patrick J McCauley
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Satish Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| |
Collapse
|
3
|
Zhang K, Xue K, Loh XJ. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021; 7:77. [PMID: 34202514 PMCID: PMC8293033 DOI: 10.3390/gels7030077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Thermogels are also known as thermo-sensitive or thermo-responsive hydrogels and can undergo a sol-gel transition as the temperature increases. This thermogelling behavior is the result of combined action from multiscale thermo-responsive mechanisms. From micro to macro, these mechanisms can be attributed to LCST behavior, micellization, and micelle aggregation of thermogelling polymers. Due to its facile phase conversion properties, thermogels are injectable yet can form an in situ gel in the human body. Thermogels act as a useful platform biomaterial that operates at physiological body temperatures. The purpose of this review is to summarize the recent progress in thermogel research, including investigations on the thermogel gelation mechanism and its applications in drug delivery, 3D cell culture, and tissue engineering. The review also discusses emerging directions in the study of thermogels.
Collapse
Affiliation(s)
- Kaiwen Zhang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology (SUSTech), 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
4
|
Santini C, Arranja AG, Denkova AG, Schosseler F, Morawska K, Dubruel P, Mendes E, de Jong M, Bernsen MR. Intravenous and intratumoral injection of Pluronic P94: The effect of administration route on biodistribution and tumor retention. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2179-2188. [PMID: 28535990 DOI: 10.1016/j.nano.2017.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/29/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Pluronics P94 are block-copolymer showing prolonged circulation time and tumor-cell internalization in vitro, suggesting a potential for tumor accumulation and as a drug carrier. Here we report the results of the radiolabeled-P94 unimers (P94-111In-DTPA) on tumor uptake/retention and biodistribution after intravenous and intratumoral injection to tumor-bearing mice. Intravenous administration results in a high radioactive signal in the liver; while in tumor and other healthy tissues only low levels of radioactivity could be measured. In contrast, the intratumoral injection of P94 resulted in elevated levels of radioactivity in the tumor and low levels in other organs, including the liver. Independently from the injection route, the tumor tissue presented long retention of radioactivity. The minimal involvement of off-target tissues of P94, together with the excellent tracer retention over-time in the tumor designates Pluronic P94 copolymer as a highly promising carrier for anti-tumor drugs.
Collapse
Affiliation(s)
- Costanza Santini
- Department of Radiology & Nuclear Medicine, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam
| | - Alexandra G Arranja
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands; Institut Charles Sadron, University of Strasbourg, CNRS UPR 22, 23 rue du Loess, 67034 Strasbourg, cedex 2, France; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ, 2628 BL Delft, The Netherlands
| | - Antonia G Denkova
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - François Schosseler
- Institut Charles Sadron, University of Strasbourg, CNRS UPR 22, 23 rue du Loess, 67034 Strasbourg, cedex 2, France
| | - Karolina Morawska
- Departments of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Peter Dubruel
- Departments of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Eduardo Mendes
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ, 2628 BL Delft, The Netherlands
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam
| | - Monique R Bernsen
- Department of Radiology & Nuclear Medicine, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam.
| |
Collapse
|
5
|
Zheng Y, Wyman IW. Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide): Syntheses, Structural Characterizations and Applications for Drug Delivery. Polymers (Basel) 2016; 8:E198. [PMID: 30979290 PMCID: PMC6431930 DOI: 10.3390/polym8050198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs) have been extensively studied as drug delivery carriers through host⁻guest interactions. CD-based poly(pseudo)rotaxanes, which are composed of one or more CD rings threading on the polymer chain with or without bulky groups (or stoppers), have attracted great interest in the development of supramolecular biomaterials. Poly(ethylene oxide) (PEO) is a water-soluble, biocompatible polymer. Depending on the molecular weight, PEO can be used as a plasticizer or as a toughening agent. Moreover, the hydrogels of PEO are also extensively studied because of their outstanding characteristics in biological drug delivery systems. These biomaterials based on CD and PEO for controlled drug delivery have received increasing attention in recent years. In this review, we summarize the recent progress in supramolecular architectures, focusing on poly(pseudo)rotaxanes, vesicles and supramolecular hydrogels based on CDs and PEO for drug delivery. Particular focus will be devoted to the structures and properties of supramolecular copolymers based on these materials as well as their use for the design and synthesis of supramolecular hydrogels. Moreover, the various applications of drug delivery techniques such as drug absorption, controlled release and drug targeting based CD/PEO supramolecular complexes, are also discussed.
Collapse
Affiliation(s)
- Yue Zheng
- Department of internal medicine, The First Hospital in Qinhuangdao Affiliated to Hebei Medical University, Qinhuangdao 066004, China.
| | - Ian W Wyman
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|