1
|
Ducrocq M, Rinaldi A, Halgand B, Veziers J, Guihard P, Boury F, Debuigne A. Bioactive dextran-based scaffolds from emulsion templates co-stabilized by poly(lactic-co-glycolic acid) nanocarriers. Colloids Surf B Biointerfaces 2024; 245:114342. [PMID: 39486376 DOI: 10.1016/j.colsurfb.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Porous polymer scaffolds are widely investigated as temporary implants in regenerative medicine to repair damaged tissues. While biocompatibility, degradability, mechanical properties comparable to the native tissues and controlled porosity are prerequisite for these scaffolds, their loading with pharmaceutical or biological active ingredients such as growth factors, in particular proteins, opens up new perspective for tissue engineering applications. This implies the development of scaffold loading strategies that minimize the risk of protein denaturation and allow to control their release profile. This work reports on a straightforward method for preparing bioactive dextran-based scaffolds from high internal phase emulsion (HIPE) templates containing poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) serving both as co-stabilizers for the emulsion and nanocarriers for drug or therapeutic protein models. Scaffold synthesis are achieved by photocuring of methacrylated dextran located in the external phase of a HIPE stabilized by the NPs in combination or not with a non-ionic surfactant. Fluorescent labelling of the NPs highlights their integration in the scaffold. The introduction of NPs, and even more so when combined with a surfactant, increases the stability and mechanical properties of the scaffolds. Cell viability tests demonstrate the non-toxic nature of these NPs-loaded scaffolds. The study of the release of a model protein from the scaffold, namely lysozyme, shows that its encapsulation in nanoparticles decreases the release rate and provides additional control over the release profile.
Collapse
Affiliation(s)
- Maude Ducrocq
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liège (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, Liège B-4000, Belgium; Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France; Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Arianna Rinaldi
- Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France
| | - Boris Halgand
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Joëlle Veziers
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Pierre Guihard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France.
| | - Frank Boury
- Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France.
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liège (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, Liège B-4000, Belgium.
| |
Collapse
|
2
|
Ghosh S, Yadav A, Rani S, Takkar S, Kulshreshtha R, Nandan B, Srivastava RK. 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1927-1946. [PMID: 36701663 DOI: 10.1021/acs.langmuir.2c02936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the realm of biomaterials, particularly bone tissue engineering, there has been a great increase in interest in scaffolds with hierarchical porosity and customizable multifunctionality. Recently, the three-dimensional (3D) printing of biopolymer-based inks (solutions or emulsions) has gained high popularity for fabricating tissue engineering scaffolds, which optimally satisfies the desired properties and performances. Herein, therefore, we explore the fabrication of 3D printed hierarchical porous scaffolds of poly(ε-caprolactone) (PCL) using the water-in-oil (w/o) Pickering PCL high internal phase emulsions (HIPEs) as the ink in 3D printer. The Pickering PCL HIPEs stabilized using hydrophobically modified nanoclay comprised of aqueous poly(vinyl alcohol) (PVA) as the dispersed phase. Rheological measurements suggested the shear thinning behavior of Pickering HIPEs having a dispersed droplet diameter of 3-25 μm. The pore morphology resembling the natural extracellular matrix and the mechanical properties of scaffolds were customized by tuning the emulsion composition and 3D printing parameters. In vitro biomineralization and drug release studies proved the scaffolds' potential in developing the apatite-rich bioactive interphase and controlled drug delivery, respectively. During in vitro osteoblast (MG63) growth experiments for up to 7 days, good adhesion and proliferation on PCL scaffolds confirmed their cytocompatibility, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) analysis. This study suggests that the assembly of HIPE templates and 3D printing is a promising approach to creating hierarchical porous scaffolds potentially suitable for bone tissue engineering and can be stretched to other biopolymers as well.
Collapse
Affiliation(s)
- Sagnik Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Anilkumar Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Sweety Rani
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Sonam Takkar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
3
|
Lin C, Pan P, Shan G, Du M. Thermoresponsive Water-in-Oil-in-Water Pickering Double Emulsions Stabilized with Biodegradable and Semicrystalline Poly(ethylene glycol)- b-poly(ε-caprolactone- co-δ-valerolactone) Diblock Copolymer Micelles for Controlled Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14918-14927. [PMID: 36420614 DOI: 10.1021/acs.langmuir.2c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water-in-oil-in-water (W/O/W) Pickering double emulsions are promising materials for the construction of carriers for water-soluble and oil-soluble molecules or drug delivery systems if the contradictive trade-off between their extreme stability and controlled release properties can be resolved. In this study, biodegradable and biocompatible poly(ethylene glycol)-b-poly(ε-caprolactone-co-δ-valerolactone) (PEG-b-PCVL) diblock copolymers with predesigned hydrophilic to hydrophobic block length ratios and nearly identical ε-caprolactone/δ-valerolactone molar ratio (8/2), were synthesized by ring-opening copolymerization. Then, they self-assembled to create semicrystalline micelles. The melting points of PEG-b-PCVL copolymers and their lyophilized micelles were within a physiological range of temperatures, as determined by differential scanning calorimetry. Water contact angle measurements provided evidence that the surface wettability of PEG-b-PCVL micelles could be tuned by the PCVL block mass fractions or temperature stimulus. Such PEG-b-PCVL micelles were employed as a single particulate stabilizer to develop Pickering double emulsions through a one-step emulsification technique. W/O/W Pickering double emulsions could be generated using relatively hydrophobic PEG-b-PCVL micelles with high mass fractions (exceeding about 89%) of PCVL blocks, and they displayed excellent long-term physical stabilities at room temperature. However, the Pickering double emulsions underwent a rapid microstructural transition into simple oil-in-water Pickering emulsions instead of complete demulsification at elevated temperature (37 °C), which was attributed to the hydrophilicity of micelles enhanced when the core-forming PCVL melted realized by temperature stimulus. Consequently, such W/O/W Pickering double emulsions stabilized solely with semicrystalline PEG-b-PCVL micelles exhibit thermal responsiveness, enabling them to release vitamin B12 encapsulated within the internal aqueous phase rapidly.
Collapse
Affiliation(s)
- Chao Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Miao Du
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Bio-compatible n-HAPs/polymer monolithic composites templated from CO2-in-water high internal phase emulsions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Durgut E, Sherborne C, Aldemir Dikici B, Reilly GC, Claeyssens F. Preparation of Interconnected Pickering Polymerized High Internal Phase Emulsions by Arrested Coalescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10953-10962. [PMID: 36027593 PMCID: PMC9476866 DOI: 10.1021/acs.langmuir.2c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emulsion templating is a method that enables the production of highly porous and interconnected polymer foams called polymerized high internal phase emulsions (PolyHIPEs). Since emulsions are inherently unstable systems, they can be stabilized either by surfactants or by particles (Pickering HIPEs). Surfactant-stabilized HIPEs form materials with an interconnected porous structure, while Pickering HIPEs typically form closed pore materials. In this study, we describe a system that uses submicrometer polymer particles to stabilize the emulsions. Polymers fabricated from these Pickering emulsions exhibit, unlike traditional Pickering emulsions, highly interconnected large pore structures, and we related these structures to arrested coalescence. We describe in detail the morphological properties of this system and their dependence on different production parameters. This production method might provide an interesting alternative to poly-surfactant-stabilized-HIPEs, in particular where the application necessitates large pore structures.
Collapse
Affiliation(s)
- Enes Durgut
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for in Silico
Medicine, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Colin Sherborne
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Betül Aldemir Dikici
- Department
of Bioengineering, Izmir Institute of Technology, Urla, Izmir, 35433, Turkey
| | - Gwendolen C. Reilly
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for in Silico
Medicine, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Frederik Claeyssens
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for in Silico
Medicine, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
6
|
Yao Q, Liu S, Zheng W, Chen M, Zhou S, Liao M, Huang W, Hu Y, Zhou W. Formation of poly(ε‐caprolactone)‐embedded bioactive nanoparticles/collagen hierarchical scaffolds with the designed and customized porous structures. J Appl Polym Sci 2022. [DOI: 10.1002/app.52749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qin Yao
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Shuifeng Liu
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Weihan Zheng
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou China
| | - Manting Chen
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Shuzhen Zhou
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Minjian Liao
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Wenhua Huang
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou China
| | - Yang Hu
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Wuyi Zhou
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| |
Collapse
|
7
|
Yadav A, Ghosh S, Samanta A, Pal J, Srivastava RK. Emulsion templated scaffolds of poly(ε-caprolactone) - a review. Chem Commun (Camb) 2022; 58:1468-1480. [PMID: 35014993 DOI: 10.1039/d1cc04941k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of poly(ε-caprolactone) (PCL) and its 3D scaffolds in tissue engineering has already been established due to its ease of processing into long-term degradable implants and approval from the FDA. This review presents the role of high internal phase emulsion (HIPE) templating in the fabrication of PCL scaffolds, and the versatility of the technique along with challenges associated with it. Considering the huge potential of HIPE templating, which so far has mainly been focused on free radical polymerization of aqueous HIPEs, we provide a summary of how the technique has been expanded to non-aqueous HIPEs and other modes of polymerization such as ring-opening. The scope of coupling of HIPE templating with some of the advanced fabrication methods such as 3D printing or electrospinning is also explored.
Collapse
Affiliation(s)
- Anilkumar Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Sagnik Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Archana Samanta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Jit Pal
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| |
Collapse
|
8
|
|
9
|
Munive-Olarte A, Hidalgo-Moyle JJ, Velasquillo C, Juarez-Moreno K, Mota-Morales JD. Boosting cell proliferation in three-dimensional polyacrylates/nanohydroxyapatite scaffolds synthesized by deep eutectic solvent-based emulsion templating. J Colloid Interface Sci 2021; 607:298-311. [PMID: 34509107 DOI: 10.1016/j.jcis.2021.08.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Among three-dimensional (3D) scaffold fabrication methods, porous polymers templated using high internal phase emulsions (HIPEs) have emerged as an attractive method due to the facile generation of interconnected porosity through a variety of synthetic routes. These include a bottom-up approach to selectively incorporate nanomaterials onto the inner walls in a nonaqueous environment. In this work, novel nonaqueous HIPEs made of different (meth)acrylate monomers and a deep eutectic solvent (DES) were formulated with nonfunctionalized nanohydroxyapatite (NHA), which also played the role of cosurfactant. Free radical polymerization of HIPEs yielded free-standing nanocomposites with 3D interconnected macroporosity and nonfunctionalized NHA selectively decorating the scaffolds' inner surface. The influence of different polymer functionalities, acrylate or methacrylate, their alkyl tail length, and the presence of NHA on MC3T3-E1 preosteoblast cell proliferation in vitro, reactive oxygen species (ROS) production and alkaline phosphatase (ALP) activity were evaluated. All materials presented promising biocompatibility, non-hemolytic activity, negligible inflammatory response along to remarkably enhanced cell proliferation (e.g., up to 160-fold cell proliferation increase compared with polystyrene plate) in vitro, which open the path for the development of scaffolds in regenerative medicine. It is noteworthy that polyHIPEs studied here were obtained using a green synthetic protocol where nonfunctionalized nanoparticles can be selectively incorporated into a scaffolds' inner walls. This versatile technique allows for the simple construction of 3D bioactive nanocomposite scaffolds with varied compositions for cell culture.
Collapse
Affiliation(s)
- Areli Munive-Olarte
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada B.C. 22860, Mexico; Posgrado en Nanociencias, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada B.C. 22860, Mexico
| | - Joseline J Hidalgo-Moyle
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CDMX 04510, Mexico
| | - Cristina Velasquillo
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación LGII, Ciudad de México, CDMX 141389, Mexico
| | - Karla Juarez-Moreno
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada B.C. 22860, Mexico.
| | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, QRO 76230, Mexico.
| |
Collapse
|
10
|
Kramer S, Cameron NR, Krajnc P. Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications. Polymers (Basel) 2021; 13:polym13111786. [PMID: 34071683 PMCID: PMC8198890 DOI: 10.3390/polym13111786] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established medium for porous polymer preparation (polyHIPEs). The ability to influence the pore size and interconnectivity, together with the process scalability and a wide spectrum of possible chemistries are important advantages of polyHIPEs. In this review, the focus on the biomedical applications of polyHIPEs is emphasised, in particular the applications of polyHIPEs as scaffolds/supports for biological cell growth, proliferation and tissue (re)generation. An overview of the polyHIPE preparation methodology is given and possibilities of morphology tuning are outlined. In the continuation, polyHIPEs with different chemistries and their interaction with biological systems are described. A further focus is given to combined techniques and advanced applications.
Collapse
Affiliation(s)
- Stanko Kramer
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Neil R. Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
- Correspondence: (N.R.C.); (P.K.)
| | - Peter Krajnc
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Correspondence: (N.R.C.); (P.K.)
| |
Collapse
|
11
|
Emulsion-templated macroporous ammonium based polymers: Synthesis and dye adsorption study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Aldemir Dikici B, Claeyssens F. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Front Bioeng Biotechnol 2020; 8:875. [PMID: 32903473 PMCID: PMC7435020 DOI: 10.3389/fbioe.2020.00875] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal naturally, by using highly porous matrices called TE scaffolds made of biocompatible and biodegradable materials. There are various manufacturing techniques commonly used to fabricate TE scaffolds. However, in most cases, they do not provide materials with a highly interconnected pore design. Thus, emulsion templating is a promising and convenient route for the fabrication of matrices with up to 99% porosity and high interconnectivity. These matrices have been used for various application areas for decades. Although this polymer structuring technique is older than TE itself, the use of polymerised internal phase emulsions (PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing techniques. It is likely because it requires a multidisciplinary background including materials science, chemistry and TE although producing emulsion templated scaffolds is practically simple. To date, a number of excellent reviews on emulsion templating have been published by the pioneers in this field in order to explain the chemistry behind this technique and potential areas of use of the emulsion templated structures. This particular review focusses on the key points of how emulsion templated scaffolds can be fabricated for different TE applications. Accordingly, we first explain the basics of emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the role of each ingredient in the emulsion and the impact of the compositional changes and process conditions on the characteristics of PolyHIPEs. Afterward, current fabrication methods of biocompatible PolyHIPE scaffolds and polymerisation routes are detailed, and the functionalisation strategies that can be used to improve the biological activity of PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and hard TE as well as in vitro models and drug delivery in the literature are summarised.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Agrawal M, Yadav A, Nandan B, Srivastava RK. Facile synthesis of templated macrocellular nanocomposite scaffold via emulsifier-free HIPE-ROP. Chem Commun (Camb) 2020; 56:12604-12607. [DOI: 10.1039/d0cc05331g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
High internal phase emulsion (HIPE)-templated macrocellular nanocomposite scaffolds of crosslinked poly(ε-caprolactone) were produced using an emulsifier-free, single-step synthesis and showed superior resiliency and sorption capacity.
Collapse
Affiliation(s)
- Meenal Agrawal
- Department of Textile and Fibre Engineering
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi
- India
| | - Anilkumar Yadav
- Department of Textile and Fibre Engineering
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi
- India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi
- India
| | - Rajiv K. Srivastava
- Department of Textile and Fibre Engineering
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi
- India
| |
Collapse
|
14
|
Affiliation(s)
- Michael S. Silverstein
- Department of Materials Science and EngineeringTechnion – Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
15
|
Utroša P, Onder OC, Žagar E, Kovačič S, Pahovnik D. Shape Memory Behavior of Emulsion-Templated Poly(ε-Caprolactone) Synthesized by Organocatalyzed Ring-Opening Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01780] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Petra Utroša
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ozgun Can Onder
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Sebastijan Kovačič
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
García-Landeros SA, Cervantes-Díaz JM, Gutiérrez-Becerra A, Pelayo-Vázquez JB, Landazuri-Gomez G, Herrera-Ordonez J, Soltero-Martínez JFA, Mota-Morales JD, Pérez-García MG. Oil-in-eutectic mixture HIPEs co-stabilized with surfactant and nanohydroxyapatite: ring-opening polymerization for nanocomposite scaffold synthesis. Chem Commun (Camb) 2019; 55:12292-12295. [PMID: 31538164 DOI: 10.1039/c9cc06292k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mixtures of a nonionic surfactant and non-functionalized nanohydroxyapatite (NHA) enhanced the stability of oil-in-eutectic mixture high internal phase emulsions (HIPEs). Upon ring opening polymerization of the eutectic mixture composed of l-lactide and ε-caprolactone, biodegradable polyHIPEs with specific cavity sizes and selective interfacial functionalization with NHA are produced.
Collapse
Affiliation(s)
| | - José M Cervantes-Díaz
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, Jalisco 45425, Mexico.
| | | | - José B Pelayo-Vázquez
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, Jalisco 45425, Mexico.
| | - Gabriel Landazuri-Gomez
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco 44430, Mexico
| | - Jorge Herrera-Ordonez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| | | | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| | - María G Pérez-García
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, Jalisco 45425, Mexico.
| |
Collapse
|
17
|
Zhang T, Sanguramath RA, Israel S, Silverstein MS. Emulsion Templating: Porous Polymers and Beyond. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02576] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tao Zhang
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | | | - Sima Israel
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Michael S. Silverstein
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
18
|
Zhu W, Zhu Y, Zhou C, Zhang S. Pickering emulsion-templated polymers: insights into the relationship between surfactant and interconnecting pores. RSC Adv 2019; 9:18909-18916. [PMID: 35516887 PMCID: PMC9064990 DOI: 10.1039/c9ra03186c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 12/25/2022] Open
Abstract
Pickering high internal phase emulsions (HIPEs) using micron-size polymeric particles as stabilizer were developed. By adding a small amount of surfactant to the Pickering HIPEs, macroporous polymers with a well-define open-cell structure were synthesized with these HIPEs as templates. Owing to the micron-size of the particles, the particle locations could be observed directly by laser scanning confocal microscopy. It was found that the excess and attached particles aggregated and formed thick particle layers around the droplets when the HIPE was stabilized solely by particles. These thick particle layers were extremely stable, and did not easily rupture during or after polymerization, which caused the resulting polymers to have a closed-cell structure. When a small amount of surfactant was added, it was found that the surfactant disaggregated the particles, leaving them well-dispersed in the continuous phase. Moreover, the surfactant tended to occupy the oil-water interface at the contact point of adjacent droplets, where the interconnecting pores were hence likely to be formed after consolidation of the continuous phase. This observation confirmed experimentally the mechanism of interconnecting pore formation in Pickering-HIPE-templated porous polymers proposed theoretically in previous works.
Collapse
Affiliation(s)
- Wenxiao Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yun Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Ce Zhou
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
19
|
Aldemir Dikici B, Sherborne C, Reilly GC, Claeyssens F. Emulsion templated scaffolds manufactured from photocurable polycaprolactone. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Hu Y, Wang J, Li X, Hu X, Zhou W, Dong X, Wang C, Yang Z, Binks BP. Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions. J Colloid Interface Sci 2019; 545:104-115. [DOI: 10.1016/j.jcis.2019.03.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 11/28/2022]
|
21
|
Ma J, Lin L, Zuo Y, Zou Q, Ren X, Li J, Li Y. Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis. RSC Adv 2019; 9:5338-5346. [PMID: 35515952 PMCID: PMC9060692 DOI: 10.1039/c8ra06652c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
Effects of PVAc and HA on the surface structure of PCL and the in vivo bone repair activity of scaffolds.
Collapse
Affiliation(s)
- Jingqi Ma
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Lili Lin
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi Zuo
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qin Zou
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xin Ren
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jidong Li
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yubao Li
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
22
|
Zhong L, Qu Y, Shi K, Chu B, Lei M, Huang K, Gu Y, Qian Z. Biomineralized polymer matrix composites for bone tissue repair: a review. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9324-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Zhang L, Zhang X, Zhang P, Zhang Z, Liu S, Han B. Efficient emulsifying properties of glycerol-based surfactant. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Porous hydrogel containing Prussian blue nanoparticles for effective cesium ion adsorption in aqueous media. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Fan X, Zhang S, Zhu Y, Chen J. Macroporous polymers prepared via frozen UV polymerization of the emulsion-templates stabilized by a low amount of surfactant. RSC Adv 2018; 8:10141-10147. [PMID: 35540858 PMCID: PMC9078717 DOI: 10.1039/c8ra01000e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/07/2018] [Indexed: 12/25/2022] Open
Abstract
Macroporous polymers based on high internal phase emulsions (HIPEs) possess tunable porous structures and device shapes, and these characteristics make it possible for it to be applied in many fields. However, such materials also demonstrate undesirable properties, such as their brittleness and chalkiness, due to a great amount of surfactant required (5.0-50.0%, relative to the external phase) to realize the transformation from HIPEs to macroporous polymers (polyHIPEs). Herein, O/W HIPEs stabilized by a small amount (as low as 0.1 wt%, relative to the external phase) of commercial surfactant were prepared by magnetic stirring and subsequently homogenizing, and well-defined polyHIPEs were obtained through frozen UV polymerization of these HIPEs. In this process, the prepared HIPE was squeezed out by an injector and frozen at once, which effectively prevented the coalescence of internal phase. Then a 365 nm UV light was utilized to initiate the polymerization and the temperature was kept at -20 °C in order to avoid the melting of the frozen HIPE. After the polymerization, samples, having a typical polyHIPE structure, were obtained. Besides, the original monomer, surfactant and the oil (internal phase) were respectively replaced, and well-defined polyHIPEs could still be obtained. All the results suggested that frozen UV polymerization of HIPEs was an effective and universal approach to produce polyHIPEs with a low amount of surfactant.
Collapse
Affiliation(s)
- Xiaoxing Fan
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yun Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
26
|
Tripodo G, Marrubini G, Corti M, Brusotti G, Milanese C, Sorrenti M, Catenacci L, Massolini G, Calleri E. Acrylate-based poly-high internal phase emulsions for effective enzyme immobilization and activity retention: from computationally-assisted synthesis to pharmaceutical applications. Polym Chem 2018. [DOI: 10.1039/c7py01626c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PolyHIPE functional materials were chemically conjugated with a model enzyme. It retained its activity upon flow as demonstrated by the conversion of a specific substrate.
Collapse
Affiliation(s)
- G. Tripodo
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - G. Marrubini
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - M. Corti
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - G. Brusotti
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - C. Milanese
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | - M. Sorrenti
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - L. Catenacci
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - G. Massolini
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - E. Calleri
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| |
Collapse
|
27
|
Palamà IE, Arcadio V, D'Amone S, Biasiucci M, Gigli G, Cortese B. Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Sci Rep 2017; 7:12672. [PMID: 28978922 PMCID: PMC5627265 DOI: 10.1038/s41598-017-12824-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 11/08/2022] Open
Abstract
Osteosarcomas are highly malignant tumors, which develop rapid growth and local infiltration, inducing metastases that spread primarily in the lung. Treatment of these tumors is mainly based on pre- and post-operative chemotherapy and surgery of the primary tumor. Surgical resection though, generates bone defects. Reparation of these weaknesses presents formidable challenges to orthopedic surgery. Medicine regenerative grafts that act as both tumor therapy with constant local drug delivery and tissue regeneration may provide a new prospect to address this need. These implants can provide sustained drug release at the cancer area, decreasing systemic second effects such as inflammation, and a filling of the resected tissues with regenerative biomaterials. In this study microporous poly-ε-caprolactone (PCL) scaffolds have been developed for sustained local release of anti-inflammatory drug dexamethasone (DXM), used as drug model, in cancer medicine regenerative field. The microporous PCL matrix of the scaffolds supported the attachment, proliferation and osteogenic differentiation of osteoblast-like cells, while the polyelectrolyte multilayers, anchored to the inner pore surfaces, sustained locally DXM release. These microporous scaffolds demonstrate the ability to deliver DXM as a localized tumor therapy and to promote proliferation and differentiation of osteoblast-like cells in vitro.
Collapse
Affiliation(s)
- Ilaria E Palamà
- Nanotechnology Institute, CNR-NANOTEC, via Monteroni, Lecce, 73100, Italy.
| | - Valentina Arcadio
- Nanotechnology Institute, CNR-NANOTEC, University La Sapienza, P.zle A. Moro, Roma, 00185, Italy
| | - Stefania D'Amone
- Nanotechnology Institute, CNR-NANOTEC, via Monteroni, Lecce, 73100, Italy
| | - Mariano Biasiucci
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia,Viale Regina Elena 291, 00161, Roma, Italy
| | - Giuseppe Gigli
- Nanotechnology Institute, CNR-NANOTEC, via Monteroni, Lecce, 73100, Italy
- Department Matematica e Fisica 'Ennio De Giorgi', University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Barbara Cortese
- Nanotechnology Institute, CNR-NANOTEC, University La Sapienza, P.zle A. Moro, Roma, 00185, Italy.
| |
Collapse
|
28
|
|
29
|
Yang T, Hu Y, Wang C, Binks BP. Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22950-22958. [PMID: 28636315 DOI: 10.1021/acsami.7b05012] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biocompatible and biodegradable porous scaffolds with adjustable pore structure have aroused increasing interest in bone tissue engineering. Here, we report a facile method to fabricate hierarchical macroporous biocompatible (HmPB) scaffolds by combining Pickering high internal phase emulsion (HIPE) templates with three-dimensional (3D) printing. HmPB scaffolds composed of a polymer matrix of poly(l-lactic acid), PLLA, and poly(ε-caprolactone), PCL, are readily fabricated by solvent evaporation of 3D printed Pickering HIPEs which are stabilized by hydrophobically modified silica nanoparticles (h-SiO2). The pore structure of HmPB scaffolds is easily tailored to be similar to natural extracellular matrix (ECM) by varying the fabrication conditions of the Pickering emulsion or adjusting the printing parameters. In addition, in vivo drug release studies which employ enrofloxacin (ENR) as a model drug indicate the potential of HmPB scaffolds as a drug carrier. Furthermore, in vivo cell culture assays prove that HmPB scaffolds that possess good biocompatibility as mouse bone mesenchymal stem cells (mBMSCs) can adhere and proliferate well on them. All the results suggest that HmPB scaffolds hold great potential in bone tissue engineering applications.
Collapse
Affiliation(s)
- Ting Yang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Yang Hu
- College of Materials and Energy, South China Agricultural University , Guangzhou 510642, People's Republic of China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Bernard P Binks
- School of Mathematics and Physical Sciences, University of Hull , Hull HU6 7RX, United Kingdom
| |
Collapse
|
30
|
Yin D, Guan Y, Li B, Zhang B. Antagonistic effect of particles and surfactant on pore structure of macroporous materials based on high internal phase emulsion. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Hu Y, Ma S, Yang Z, Zhou W, Du Z, Huang J, Yi H, Wang C. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Colloids Surf B Biointerfaces 2016; 140:382-391. [DOI: 10.1016/j.colsurfb.2016.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/03/2015] [Accepted: 01/02/2016] [Indexed: 01/09/2023]
|
32
|
Yin G, Zhao D, Ren Y, Zhang L, Zhou Z, Li Q. A convenient process to fabricate gelatin modified porous PLLA materials with high hydrophilicity and strength. Biomater Sci 2016; 4:310-8. [DOI: 10.1039/c5bm00414d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PLLA porous materials with high porosity were prepared by a gradual precipitation method and further modified by using different concentrations of gelatin aqueous solutions.
Collapse
Affiliation(s)
- Guangzhong Yin
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Material Science and Engineering
| | - Donglin Zhao
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Material Science and Engineering
| | - Ye Ren
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Material Science and Engineering
| | - Lianwei Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Material Science and Engineering
| | - Zheng Zhou
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Material Science and Engineering
| | - Qifang Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Material Science and Engineering
| |
Collapse
|
33
|
Brusotti G, Calleri E, Milanese C, Catenacci L, Marrubini G, Sorrenti M, Girella A, Massolini G, Tripodo G. Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses. Polym Chem 2016. [DOI: 10.1039/c6py01992g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional polyacrylate-based materials rationally designed by high internal phase emulsion (polyHIPE) are reported.
Collapse
Affiliation(s)
| | - Enrica Calleri
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - Chiara Milanese
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | | | | - Alessandro Girella
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | |
Collapse
|
34
|
Yang Y, Hu Y, Zhang Q, Zhang G, Liu Z, Wang C. MoS 2 armored polystyrene particles with a narrow size distribution via membrane-assisted Pickering emulsions for monolayer-shelled liquid marbles. RSC Adv 2015. [DOI: 10.1039/c5ra11709g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monolayer-shelled liquid marbles were successfully stabilized by MoS2 armored polystyrene particles with a narrow size distribution via membrane-assisted Pickering emulsions.
Collapse
Affiliation(s)
- Yu Yang
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| | - Yang Hu
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| | - Qi Zhang
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| | - Guangzhao Zhang
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| | - Zhenjun Liu
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| | - Chaoyang Wang
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
35
|
Hu Y, Huang J, Zhang Q, Yang Y, Ma S, Wang C. Functional nanoparticle-decorated graphene oxide sheets as stabilizers for Pickering high internal phase emulsions and graphene oxide based foam monoliths. RSC Adv 2015. [DOI: 10.1039/c5ra18397a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A facile and versatile approach was developed for the preparation of graphene oxide sheet-based Pickering high internal phase emulsions by nanoparticle decoration.
Collapse
Affiliation(s)
- Yang Hu
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
- Institute of Biomaterials
| | - Jian Huang
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| | - Qi Zhang
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| | - Yu Yang
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| | - Shanshan Ma
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| | - Chaoyang Wang
- Research Institute of Materials Science
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
36
|
Bell RV, Rochford LA, de Rosales RTM, Stevens M, Weaver JVM, Bon SAF. Fabrication of calcium phosphate microcapsules using emulsion droplets stabilized with branched copolymers as templates. J Mater Chem B 2015; 3:5544-5552. [DOI: 10.1039/c5tb00893j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An efficient emulsion templating route using branched copolymers as droplet stabilizers for the synthesis of fluorescently labelled calcium phosphate capsules.
Collapse
Affiliation(s)
- Robert V. Bell
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Department of Materials
| | | | | | - Molly Stevens
- Department of Materials
- Imperial College London
- London SW7 2AZ
- UK
| | | | | |
Collapse
|