1
|
Qiu N, Lv QY, Li CL, Song X, Wang YQ, Chen J, Cui HF. Optimization and mechanisms of proteolytic enzyme immobilization onto large-pore mesoporous silica nanoparticles: Enhanced tumor penetration. Int J Biol Macromol 2024; 271:132626. [PMID: 38795893 DOI: 10.1016/j.ijbiomac.2024.132626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Immobilization of proteolytic enzymes onto nanocarriers is effective to improve drug diffusion in tumors through degrading the dense extracellular matrix (ECM). Herein, immobilization and release behaviors of hyaluronidase, bromelain, and collagenase (Coll) on mesoporous silica nanoparticles (MSNs) were explored. A series of cationic MSNs (CMSNs) with large and adjustable pore sizes were synthesized, and investigated together with two anionic MSNs of different pore sizes. CMSNs4.0 exhibited the highest enzyme loading capacity for hyaluronidase and bromelain, and CMSNs4.5 was the best for Coll. High electrostatic interaction, matched pore size, and large pore volume and surface area favor the immobilization. Changes of the enzyme conformations and surface charges with pH, existence of a space around the immobilized enzymes, and the depth of the pore structures, affect the release ratio and tunability. The optimal CMSNs-enzyme complexes exhibited deep and homogeneous penetration into pancreatic tumors, a tumor model with the densest ECM, with CMSNs4.5-Coll as the best. Upon loading with doxorubicin (DOX), the CMSNs-enzyme complexes induced high anti-tumor efficiencies. Conceivably, the DOX/CMSNs4.5-NH2-Coll nanodrug exhibited the most effective tumor therapy, with a tumor growth inhibition ratio of 86.1 %. The study provides excellent nanocarrier-enzyme complexes, and offers instructive theories for enhanced tumor penetration and therapy.
Collapse
Affiliation(s)
- Nan Qiu
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Qi-Yan Lv
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Chun-Ling Li
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Xiaojie Song
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Yu-Qian Wang
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Junyang Chen
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Hui-Fang Cui
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Trayford C, Wilhalm A, Habibovic P, Smeets H, van Tienen F, van Rijt S. One-pot, degradable, silica nanocarriers with encapsulated oligonucleotides for mitochondrial specific targeting. DISCOVER NANO 2023; 18:161. [PMID: 38127184 PMCID: PMC10739632 DOI: 10.1186/s11671-023-03926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Mutations in nuclear and mitochondrial genes are responsible for severe chronic disorders such as mitochondrial myopathies. Gene therapy using antisense oligonucleotides is a promising strategy to treat mitochondrial DNA (mtDNA) diseases by blocking the replication of the mutated mtDNA. However, transport vehicles are needed for intracellular, mitochondria-specific transport of oligonucleotides. Nanoparticle (NP) based vectors such as large pore mesoporous silica nanoparticles (LP) often rely on surface complexation of oligonucleotides exposing them to nucleases and limiting mitochondria targeting and controlled release ability. In this work, stable, fluorescent, hollow silica nanoparticles (HSN) that encapsulate and protect oligonucleotides in the hollow core were synthesized by a facile one-pot procedure. Both rhodamine B isothiocyanate and bis[3-(triethoxysilyl)propyl]tetrasulfide were incorporated in the HSN matrix by co-condensation to enable cell tracing, intracellular-specific degradation and controlled oligonucleotide release. We also synthesized LP as a benchmark to compare the oligonucleotide loading and release efficacy of our HSN. Mitochondria targeting was enabled by NP functionalization with cationic, lipophilic Triphenylphosphine (TPP) and, for the first time a fusogenic liposome based carrier, previously reported under the name MITO-Porter. HSN exhibited high oligonucleotide incorporation ratios and release dependent on intracellular degradation. Further, MITO-Porter capping of our NP enabled delayed, glutathione (GSH) responsive oligonucleotide release and mitochondria targeting at the same efficiency as TPP functionalized NP. Overall, our NP are promising vectors for anti-gene therapy of mtDNA disease as well as many other monogenic disorders worldwide.
Collapse
Affiliation(s)
- Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Alissa Wilhalm
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Toxicogenomics, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Hubert Smeets
- Department of Toxicogenomics, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Florence van Tienen
- Department of Toxicogenomics, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Tong T, Qi Y, Rollins D, Bussiere LD, Dhar D, Miller CL, Yu C, Wang Q. Rational design of oral drugs targeting mucosa delivery with gut organoid platforms. Bioact Mater 2023; 30:116-128. [PMID: 37560199 PMCID: PMC10406959 DOI: 10.1016/j.bioactmat.2023.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Effective oral drugs and vaccines require high delivery efficiency across the gastrointestinal epithelia and protection of medically effective payloads (i.e., immunogens) against gastric damage. In this study, hollowed nanocarriers (NCs: silica nanospheres and gold nanocages) with poly-l-lysine (PLL) coating and mammalian orthoreovirus cell attachment protein σ1 functionalization (NC-PLL-σ1) were explored as functional oral drug delivery vehicles (ODDVs). The transport of these ODDVs to mucosal lymphoid tissues could be facilitated by microfold cells (M-cells) mediated transcytosis (via σ1-α2-3-linked sialic acids adherence) across gastrointestinal epithelia. PLL coating provided protection and slow-release of rhodamine 6 G (R6G), a model payload. The transport effectiveness of these ODDVs was tested on intestinal organoid monolayers in vitro. When compared with other experimental groups, the fully functionalized ODDV system (with PLL-σ1) demonstrated two significant advantages: a significantly higher transport efficiency (198% over blank control at 48 h); and protection of payloads which led to both better transport efficiency and extended-release of payloads (61% over uncoated carriers at 48 h). In addition, it was shown that the M cell presence in intestinal organoid monolayers (modulated by Rank L stimulation) was a determining factor on the transport efficiency of the ODDVs: more M-cells (induced by higher Rank L) in the organoid monolayers led to higher transport efficiency for ODDV-delivered model payload (R6G). The fully functionalized ODDVs showed great potential as effective oral delivery vehicles for drugs and vaccines.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural Biosystem and Engineering, Iowa State University, Ames, IA, USA
| | - Yijun Qi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Derrick Rollins
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Luke D. Bussiere
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA
| | - Debarpan Dhar
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA
| | - Cathy L. Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA
| | - Chenxu Yu
- Department of Agricultural Biosystem and Engineering, Iowa State University, Ames, IA, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| |
Collapse
|
4
|
Yin H, Yan Q, Liu Y, Yang L, Liu Y, Luo Y, Chen T, Li N, Wu M. Co-encapsulation of paclitaxel and 5-fluorouracil in folic acid-modified, lipid-encapsulated hollow mesoporous silica nanoparticles for synergistic breast cancer treatment. RSC Adv 2022; 12:32534-32551. [PMID: 36425719 PMCID: PMC9661185 DOI: 10.1039/d2ra03718a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/06/2022] [Indexed: 08/27/2023] Open
Abstract
A dual-loaded multi-targeted drug delivery nanosystem was constructed to simultaneously load paclitaxel (PTX) and 5-fluorouracil (5-FU) for targeted delivery and sustained release at tumor sites. Hollow mesoporous silica nanoparticles (HMSNs) were prepared by the inverse microemulsion method, then modified with folic acid and pH- and temperature-responsive materials, co-loaded with PTX and 5-FU, and finally encapsulated into lipid membranes. The obtained nanosystem was selectively internalized by human breast cancer MCF-7 cells that overexpress folate receptors through an energy-dependent process, and it released both drugs in vitro in a simulated tumor microenvironment. Moreover, the inhibitory effect of the dual-loaded nanoparticles was significantly better than that of the free drugs, suggesting that the composite nanosystem has the potential to selectively target tumor sites and perform the synergistic effect of PTX and 5-FU, while reducing their toxic effects on normal tissues.
Collapse
Affiliation(s)
- Huanli Yin
- School of Pharmacy, Chengdu Medical College No. 783 Xindu Avenue Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
- Department of Pharmacy, West China Hospital, Sichuan University Chengdu Sichuan Province P. R. China
| | - Qi Yan
- School of Pharmacy, Chengdu Medical College No. 783 Xindu Avenue Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Yuan Liu
- School of Pharmacy, Chengdu Medical College No. 783 Xindu Avenue Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Lan Yang
- School of Pharmacy, Chengdu Medical College No. 783 Xindu Avenue Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Yang Liu
- School of Pharmacy, Chengdu Medical College No. 783 Xindu Avenue Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Yujie Luo
- School of Pharmacy, Chengdu Medical College No. 783 Xindu Avenue Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Tianyu Chen
- School of Pharmacy, Chengdu Medical College No. 783 Xindu Avenue Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Ningxi Li
- School of Pharmacy, Chengdu Medical College No. 783 Xindu Avenue Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Min Wu
- School of Pharmacy, Chengdu Medical College No. 783 Xindu Avenue Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| |
Collapse
|
5
|
Hao T, Wang Y, Liu Z, Li J, Shan L, Wang W, Liu J, Tang J. Emerging Applications of Silica Nanoparticles as Multifunctional Modifiers for High Performance Polyester Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2810. [PMID: 34835575 PMCID: PMC8622537 DOI: 10.3390/nano11112810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Nano-modification of polyester has become a research hotspot due to the growing demand for high-performance polyester. As a functional carrier, silica nanoparticles show large potential in improving crystalline properties, enhancing strength of polyester, and fabricating fluorescent polyester. Herein, we briefly traced the latest literature on synthesis of silica modifiers and the resultant polyester nanocomposites and presented a review. Firstly, we investigated synthesis approaches of silica nanoparticles for modifying polyester including sol-gel and reverse microemulsion technology, and their surface modification methods such as grafting silane coupling agent or polymer. Then, we summarized processing technics of silica-polyester nanocomposites, like physical blending, sol-gel processes, and in situ polymerization. Finally, we explored the application of silica nanoparticles in improving crystalline, mechanical, and fluorescent properties of composite materials. We hope the work provides a guideline for the readers working in the fields of silica nanoparticles as well as modifying polyester.
Collapse
Affiliation(s)
- Tian Hao
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Yao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhipeng Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jie Li
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Liangang Shan
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenchao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jixian Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jianguo Tang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Jobdeedamrong A, Theerasilp M, Nasongkla N, Crespy D. Nanocapsules with excellent biocompatibility and stability in protein solutions. Biomater Sci 2021; 9:5781-5784. [PMID: 34152342 DOI: 10.1039/d1bm00510c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Silica nanocapsules (SiO2NCs) are usually prepared with cationic surfactants that are not cytocompatible. Dialysis can be used to remove surfactants but leads to instability of the SiO2NCs when they are in the presence of proteins or biological media. Herein, SiO2NCs stabilized with a reactive surfactant are synthesized to prevent leaching upon dialysis. The SiO2NCs show superior stability and biocompatibility compared with SiO2NCs prepared with conventional surfactants. The SiO2NCs can be used in self-healing materials, smart agriculture and biomedical applications.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand.
| | | | | | | |
Collapse
|
7
|
Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2018; 119:1666-1762. [DOI: 10.1021/acs.chemrev.8b00401] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Laboratory of Fiber Materials and Modern Textiles, Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Di Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
A modified microemulsion method for fabrication of hydrogel Tragacanth nanofibers. Int J Biol Macromol 2018; 115:317-323. [DOI: 10.1016/j.ijbiomac.2018.04.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 04/08/2018] [Indexed: 11/17/2022]
|
9
|
Bian Y, Ding W, Hu L, Ma Z, Cheng L, Zhang R, Zhu X, Tang X, Dai J, Bai J, Sun Y, Sheng Z. Acceleration of Kirkendall effect processes in silicon nanospheres using magnetic fields. CrystEngComm 2018. [DOI: 10.1039/c7ce01802a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We show that a magnetic field can act as an independent parameter to accelerate the Kirkendall effect in a liquid reaction system.
Collapse
|
10
|
Lo CH, Hu TM. From a silane monomer to anisotropic buckled silica nanospheres: a polymer-mediated, solvent-free and one-pot synthesis. SOFT MATTER 2017; 13:5950-5960. [PMID: 28770266 DOI: 10.1039/c7sm01043e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The morphology of particles, along with other particle attributes, has been shown to affect the biological fate of particles administered into the body. Particles with collapsed surfaces or shells (dimpled, buckled or crumpled) can have different appearances, under the microscope, that resemble many things encountered in our daily life, such as apples/cherries, doughnuts, and bowls. Recent studies have demonstrated that they are not just particles with interesting geometries, but they can also be used as functional blocks for assembled complex materials. Since previous research focus has been on micron-sized particles and organic solvents were often used, it is of particular interest to synthesize the nanosized counterpart with a buckled surface using a purely aqueous method. Herein we report a facile method for rapid synthesis of buckled silica nanoparticles (SiNPs) based on S-nitrosothiol chemistry in a solvent-free reaction. 3-Mercaptopropyl trimethoxysilane (MPTMS) was used as a single silane source in a one-pot aqueous solution containing sodium nitrite and polyvinyl alcohol (PVA). Upon the addition of HCl, S-nitrosation and condensation of MPTMS occur simultaneously and the reaction system undergoes a rapid transition from a clear solution to a solution containing nanoparticles with a lag time controlled mainly by the amount of HCl added. The experimental parameters were systematically studied to determine the optimal concentration of each component. For a typical reaction, sub-100 nm nanoparticles can be produced in less than 1 h, and the best result can be obtained within 2 to 4 h. Remarkably, the nanoparticle exhibits buckled surface morphologies under TEM and SEM. The average size is about 60 nm in diameter. Moreover, the solid-state Si-NMR data show that T2 and T3 silicon species are rapidly evolved with slight dynamic changes over the reaction time. Further, PVA is shown to control the surface buckling as well as to stabilize the formed particles. The as-prepared SiNPs can be used as a nitric oxide (NO) carrier with the potential to release NO in an apparent zero-order manner. In conclusion, the study demonstrates the feasibility of employing an aqueous route for efficiently preparing SiNPs with multifarious surface cavities based on S-nitrosothiol chemistry.
Collapse
Affiliation(s)
- Chih-Hui Lo
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
| | | |
Collapse
|
11
|
Armetta F, Chillura Martino DF, Lombardo R, Saladino ML, Berrettoni M, Caponetti E. Synthesis of yttrium aluminum garnet nanoparticles in confined environment, and their characterization. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Wolf S, Feldmann C. Mikroemulsionen: neue Möglichkeiten zur Erweiterung der Synthese anorganischer Nanopartikel. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Silke Wolf
- Institut für Anorganische Chemie; Karlsruher Institut für Technologie (KIT); Engesserstraße 15 76131 Karlsruhe Deutschland
| | - Claus Feldmann
- Institut für Anorganische Chemie; Karlsruher Institut für Technologie (KIT); Engesserstraße 15 76131 Karlsruhe Deutschland
| |
Collapse
|
13
|
Wolf S, Feldmann C. Microemulsions: Options To Expand the Synthesis of Inorganic Nanoparticles. Angew Chem Int Ed Engl 2016; 55:15728-15752. [DOI: 10.1002/anie.201604263] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Silke Wolf
- Institut für Anorganische Chemie; Karlsruhe Institute of Technology (KIT); Engesserstrasse 15 76131 Karlsruhe Germany
| | - Claus Feldmann
- Institut für Anorganische Chemie; Karlsruhe Institute of Technology (KIT); Engesserstrasse 15 76131 Karlsruhe Germany
| |
Collapse
|
14
|
Wibowo D, Hui Y, Middelberg APJ, Zhao CX. Interfacial engineering for silica nanocapsules. Adv Colloid Interface Sci 2016; 236:83-100. [PMID: 27522646 DOI: 10.1016/j.cis.2016.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/20/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022]
Abstract
Silica nanocapsules have attracted significant interest due to their core-shell hierarchical structure. The core domain allows the encapsulation of various functional components such as drugs, fluorescent and magnetic nanoparticles for applications in drug delivery, imaging and sensing, and the silica shell with its unique properties including biocompatibility, chemical and physical stability, and surface-chemistry tailorability provides a protection layer for the encapsulated cargo. Therefore, significant effort has been directed to synthesize silica nanocapsules with engineered properties, including size, composition and surface functionality, for various applications. This review provides a comprehensive overview of emerging methods for the manufacture of silica nanocapsules, with a special emphasis on different interfacial engineering strategies. The review starts with an introduction of various manufacturing approaches of silica nanocapsules highlighting surface engineering of the core template nanomaterials (solid nanoparticles, liquid droplets, and gas bubbles) using chemicals or biomolecules which are able to direct nucleation and growth of silica at the boundary of two-phase interfaces (solid-liquid, liquid-liquid, and gas-liquid). Next, surface functionalization of silica nanocapsules is presented. Furthermore, strategies and challenges of encapsulating active molecules (pre-loading and post-loading approaches) in these capsular systems are critically discussed. Finally, applications of silica nanocapsules in controlled release, imaging, and theranostics are reviewed.
Collapse
Affiliation(s)
- David Wibowo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Anton P J Middelberg
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
15
|
Nakashima Y, Takai C, Razavi-Khosroshahi H, Shirai T, Fuji M. Effects of primary- and secondary-amines on the formation of hollow silica nanoparticles by using emulsion template method. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Nakashima Y, Takai C, Wanghui C, Razavi-Khosroshahi H, Shirai T, Fuji M. Control size distribution of hollow silica nanoparticles by viscosity of emulsion template. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Koike N, Chaikittisilp W, Shimojima A, Okubo T. Surfactant-free synthesis of hollow mesoporous organosilica nanoparticles with controllable particle sizes and diversified organic moieties. RSC Adv 2016. [DOI: 10.1039/c6ra22926c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The versatility of the surfactant-free synthesis of hollow organosilica nanoparticles was shown in terms of particle diameters and organic moieties. The porous structures were investigated precisely by advanced adsorption–desorption measurements.
Collapse
Affiliation(s)
- Natsume Koike
- Department of Chemical System Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | | | - Atsushi Shimojima
- Department of Chemical System Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Tatsuya Okubo
- Department of Chemical System Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|