1
|
Huang B, Hu Q, Zhang G, Zou J, Fei P, Wang Z. Exploring the emulsification potential of chitosan modified with phenolic acids: Emulsifying properties, functional activities, and application in curcumin encapsulation. Int J Biol Macromol 2024; 263:130450. [PMID: 38412937 DOI: 10.1016/j.ijbiomac.2024.130450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
This study successfully grafted caffeic acid and 3,4-dihydroxybenzoic acid into chitosan through a coupling reaction, yielding grafting ratio of 8.93 % for caffeic acid grafted chitosan (CA-GC) and 9.15 % for 3,4-dihydroxybenzoic acid grafted chitosan (DHB-GC) at an optimal concentration of 4 mmol phenolic acids. The characterization of modified chitosans through ultraviolet visible spectrometer (UV-vis), Fourier transform infrared spectrometer (FTIR), proton nuclear magnetic resonance (1H NMR), and x-ray photoelectron spectrometer (XPS) confirmed the successful grafting of phenolic acids. In the subsequent step of emulsion preparation, confocal laser scanning microscope images confirmed the formation of O/W (oil-in-water) emulsions. The phenolic acid-grafted chitosans exhibited better emulsification properties compared to native chitosan, such as reduced droplet size, more uniform emulsion droplet distribution, increased ζ-potential, and enhanced emulsifying activity and stability. Moreover, the modified chitosans demonstrated increased antioxidant activities (evidenced by DPPH and β-carotene assays) and displayed greater antimicrobial effects against E. coli and S. aureus. Its efficacy in curcumin encapsulation was also notable, with improved encapsulation efficiency, sustained release rates, and enhanced storage and photostability. These findings hint at the potential of modified chitosans as an effective emulsifier.
Collapse
Affiliation(s)
- Bingqing Huang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Qianyi Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Guoguang Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Jinmei Zou
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Peng Fei
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhenjiong Wang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
2
|
Discussions on the Properties of Emulsion Prepared by Using an Amphoteric Chitosan as an Emulsifier. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A typical emulsion contains oil and water phases, and these two phases can be combined by an emulsifier with both lipophilic and hydrophilic groups to form a mixture. If the component of water is more than oil, the mixture is termed as o/w emulsion. The water is called the continuous phase and the oil is called the dispersed phase. Oppositely, if the component of oil is more than water, the mixture is termed as w/o emulsion. The oil is called the continuous phase and the water is called the dispersed phase. Chitosan, which is biocompatible and non-toxic, was modified as an amphoteric emulsifier to replace sodium acrylates copolymer in the preparation of emulsions. Both sodium acrylates copolymer and the modified chitosan were used as emulsifiers, respectively, and the properties of moisturizing, transmittance, the number of bacteria, and emulsion stability were measured. The experimental results showed that the amount of amphoteric chitosan is less than that of sodium acrylate copolymer by 20% under a similar degree of emulsification. The measurement of spatial moisture showed the difference in equilibrium humidity was in the range of 2.05 to 2.20 gH2O/kg dry air, indicating that the moisture retention of the modified chitosan is better. In addition, the calculation of bacterial growth confirmed that the number of bacteria in the amphoteric chitosan emulsion and the sodium acrylate copolymer emulsion were 80 and 560, respectively. The emulsion stability was tested by the separation of oil and water phases in the diluted emulsion and by centrifugal accelerated sedimentation. The results showed that, for both emulsifiers, no separation of the oil and water phases occurred within one hour, and the stability of the modified chitosan emulsion was better. Therefore, the modified chitosan successfully substitutes sodium acrylates copolymer as an emulsifier in the preparation of emulsion.
Collapse
|
3
|
Zhang C, He Y, Song Q, Tan Y, Ren Y, Cheng W, Miao R, Fan W, Zhou D. High Performance Microwave Absorption of Lightweight and Porous Non-carbon-based Polymeric Monoliths via Gel Emulsion Template. Polym Chem 2022. [DOI: 10.1039/d2py00002d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A special porous non-carbon-based microwave-absorbing materials are designed and synthesized by bonding di(prop-1-en-2-yl) ferrocene into porous polymeric monoliths made by gel-emulsions as templates. In this study, a sequence of porous...
Collapse
|
4
|
|
5
|
Chen K, Lei L, Lou H, Niu J, Yang D, Qiu X, Qian Y. High internal phase emulsions stabilized with carboxymethylated lignin for encapsulation and protection of environmental sensitive natural extract. Int J Biol Macromol 2020; 158:430-442. [PMID: 32320804 DOI: 10.1016/j.ijbiomac.2020.04.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Oil-in-water (O/W) high internal phase emulsions (HIPEs) are widely used in foods, pharmaceuticals and cosmetics due to the high drug loading ratio, specific rheological behaviors and long shelf life. However, protective performance of active components within HIPEs maintains a low level. Herein, a series of carboxymethylated enzymatic hydrolysis lignin (EHL-CM-x) were synthesized by nucleophilic substitution and applied as macromolecular surfactant to stabilize the O/W HIPEs. It was found that EHL-CM-x combined with a small dosage of alkyl polyglycoside (APG) are able to stabilize HIPEs with 87 vol% soybean oil under neutral condition, which could be recognized as the highest internal phase reported in foods and pharmaceuticals. As a bioactive compound carrier, such EHL-CM-x stabilized HIPEs enable to provide outstanding UV, thermal and oxidation protection for sensitive natural extracts. The residual drug level obtained in this work is more than two times other gliadin/chitosan hybrid particles and sulfomethylated lignin stabilized HIPEs after UV irradiation. In vitro experiments showed that the minimum inhibitory concentration of curcumin within HIPEs against S. aureus and E. coli was 3.13 mg/mL and 12.5 mg/mL, respectively. Such lignin stabilized HIPEs could be potentially used in various areas, especially those with high stability and biosafety requirements.
Collapse
Affiliation(s)
- Kai Chen
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Lei Lei
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Juntao Niu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China.
| | - Yong Qian
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Surface-Modified Chitosan: An Adsorption Study of a “Tweezer-Like” Biopolymer with Fluorescein. SURFACES 2019. [DOI: 10.3390/surfaces2030035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tweezer-like adsorbents with enhanced surface area were synthesized by grafting aniline onto the amine sites of a chitosan biopolymer scaffold. The chemical structure and textural properties of the adsorbents were characterized by thermogravimetric analysis (TGA) and spectral methods, including Fourier transform infrared (FT-IR), nuclear magnetic resonance (1H- and, 13C-NMR) and scanning electron microscopy (SEM). Equilibrium solvent swelling results for the adsorbent materials provided evidence of a more apolar biopolymer surface upon grafting. Equilibrium uptake studies with fluorescein at ambient pH in aqueous media reveal a high monolayer adsorption capacity (Qm) of 61.8 mg·g−1, according to the Langmuir isotherm model. The kinetic adsorption profiles are described by the pseudo-first order kinetic model. 1D NMR and 2D-NOESY NMR spectra were used to confirm the role of π-π interactions between the adsorbent and adsorbate. Surface modification of the adsorbent using monomeric and dimeric cationic surfactants with long hydrocarbon chains altered the hydrophile-lipophile balance (HLB) of the adsorbent surface, which resulted in attenuated uptake of fluorescein by the chitosan molecular tweezers. This research contributes to a first example of the uptake properties for a tweezer-like chitosan adsorbent and the key role of weak cooperative interactions in controlled adsorption of a model anionic dye.
Collapse
|
7
|
Stubenrauch C, Menner A, Bismarck A, Drenckhan W. Emulsions- und Schaumtemplatierung - vielversprechende Methoden zur Herstellung maßgeschneiderter poröser Polymere. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cosima Stubenrauch
- Institut für Physikalische Chemie; Universität Stuttgart; Stuttgart Deutschland
| | - Angelika Menner
- Polymer & Composite Engineering (PaCE) Group, Institut für Materialchemie; Fakultät für Chemie; Universität Wien; Österreich
| | - Alexander Bismarck
- Polymer & Composite Engineering (PaCE) Group, Institut für Materialchemie; Fakultät für Chemie; Universität Wien; Österreich
- Polymer & Composite Engineering (PaCE) Group; Department of Chemical Engineering; Imperial College; London Großbritannien
| | | |
Collapse
|
8
|
Stubenrauch C, Menner A, Bismarck A, Drenckhan W. Emulsion and Foam Templating-Promising Routes to Tailor-Made Porous Polymers. Angew Chem Int Ed Engl 2018; 57:10024-10032. [DOI: 10.1002/anie.201801466] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/26/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Cosima Stubenrauch
- Institute of Physical Chemistry; University of Stuttgart; Stuttgart Germany
| | - Angelika Menner
- Polymer & Composite Engineering (PaCE) Group, Institute of Materials Chemistry & Research; Faculty of Chemistry; University of Vienna; Vienna Austria
| | - Alexander Bismarck
- Polymer & Composite Engineering (PaCE) Group, Institute of Materials Chemistry & Research; Faculty of Chemistry; University of Vienna; Vienna Austria
- Polymer & Composite Engineering (PaCE) Group; Department of Chemical Engineering; Imperial College; London UK
| | | |
Collapse
|
9
|
Liquid foam templating - A route to tailor-made polymer foams. Adv Colloid Interface Sci 2018; 256:276-290. [PMID: 29728156 DOI: 10.1016/j.cis.2018.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 12/11/2022]
Abstract
Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It finishes with an outlook on future developments. Occasional references to non-polymeric foams are given if the analogy provides specific insight into a physical phenomenon.
Collapse
|
10
|
Dai Y, Wang N, Li Y, Yao M, Gan H, Hu W. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films. FUSION ENGINEERING AND DESIGN 2016. [DOI: 10.1016/j.fusengdes.2016.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Neděla O, Slepička P, Kolská Z, Slepičková Kasálková N, Sajdl P, Veselý M, Švorčík V. Functionalized polyethylene naphthalate for cytocompatibility improvement. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|