1
|
Thirumavalavan M, Sukumar K, Sabarimuthu SQ. Trends in green synthesis, pharmaceutical and medical applications of nano ZnO: A review. INORG CHEM COMMUN 2024; 169:113002. [DOI: 10.1016/j.inoche.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
2
|
Development of andrographolide-loaded solid lipid nanoparticles for lymphatic targeting: Formulation, optimization, characterization, in vitro, and in vivo evaluation. Drug Deliv Transl Res 2023; 13:658-674. [PMID: 35978260 DOI: 10.1007/s13346-022-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 12/30/2022]
Abstract
Andrographolide, the primary bioactive constituent of Andrographis paniculata, is a promising natural substance with numerous pharmacotherapy uses. Low water solubility, short half-life, and low permeability necessitate the development of a delivery system that enhances its entrapment efficiency, bioavailability, lymphatic targeting, and by-pass hepatic effect. The andrographolide-loaded solid lipid nanoparticles were fabricated by melt-emulsification and ultrasonication and optimized with Design-Expert software. In the optimal formulation, Glycerol monostearate as the solid lipid and Poloxamer 407 and Span 60 as surfactants were used. Optimum AND-SLN was observed to have a mean particle size, polydispersity index, zeta potential, and entrapment efficiency of 193.84 nm, 0.211, - 22.8 mV, and 83.70% respectively. An optimized formulation was characterized by examining surface morphology, X-ray diffraction, and differential scanning calorimetry. In vitro studies have shown sustained drug release from AND-SLN for up to 24 h. The stability studies showed that there was no significant change in the mean particle size and entrapment efficiency after storage at 4 ± 2 °C and 25 ± 2 °C/60 ± 5% RH. In in vivo pharmacokinetics studies, AND-SLN was found to have enhanced bioavailability and specificity in the spleen and thymus compared to plasma, providing evidence that the formulations could enhance target specificity and bioavailability in comparison to pure drugs. The H&E staining of the liver, spleen, and thymus treated with the AND-SLN revealed no signs of damage histopathologically. Thus, AND-SLN possess a high potential for improved efficacy and are an efficient vehicle for delivering drugs to the lymphatic system.
Collapse
|
3
|
Percivalle NM, Carofiglio M, Conte M, Rosso G, Bentivogli A, Mesiano G, Vighetto V, Cauda V. Artificial and Naturally Derived Phospholipidic Bilayers as Smart Coatings of Solid-State Nanoparticles: Current Works and Perspectives in Cancer Therapy. Int J Mol Sci 2022; 23:ijms232415815. [PMID: 36555455 PMCID: PMC9779745 DOI: 10.3390/ijms232415815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in nanomedicine toward cancer treatment have considered exploiting liposomes and extracellular vesicles as effective cargos to deliver therapeutic agents to tumor cells. Meanwhile, solid-state nanoparticles are continuing to attract interest for their great medical potential thanks to their countless properties and possible applications. However, possible drawbacks arising from the use of nanoparticles in nanomedicine, such as the nonspecific uptake of these materials in healthy organs, their aggregation in biological environments and their possible immunogenicity, must be taken into account. Considering these limitations and the intrinsic capability of phospholipidic bilayers to act as a biocompatible shield, their exploitation for effectively encasing solid-state nanoparticles seems a promising strategy to broaden the frontiers of cancer nanomedicine, also providing the possibility to engineer the lipid bilayers to further enhance the therapeutic potential of such nanotools. This work aims to give a comprehensive overview of the latest developments in the use of artificial liposomes and naturally derived extracellular vesicles for the coating of solid-state nanoparticles for cancer treatment, starting from in vitro works until the up-to-date advances and current limitations of these nanopharmaceutics in clinical applications, passing through in vivo and 3D cultures studies.
Collapse
|
4
|
Barui S, Percivalle NM, Conte M, Dumontel B, Racca L, Carofiglio M, Cauda V. Development of doped ZnO-based biomimicking and tumor-targeted nanotheranostics to improve pancreatic cancer treatment. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractDespite different nanomaterials were developed so far against cancer, their potential drawbacks are still scarcely considered. The off-target delivery of a therapeutic compound, as well as the non-specific uptake of these nanomaterials by healthy tissues or organs, and their potential immunogenicity are some of the major issues that still have to be faced prior to a successful clinical translation. This work aims to develop an innovative theranostic, biocompatible, and drug-loaded nanoconstruct based on Gadolinium-doped Zinc Oxide (ZnO-Gd) nanocrystals (NCs), focusing on one of the most lethal diseases, i.e., pancreatic cancer. The use of zinc oxide is motivated by the huge potential of this nanomaterial already demonstrated for in vitro and in vivo applications, while the Gadolinium doping confers magnetic properties useful for diagnostics. Furthermore, an innovative biomimetic shell is here used to coat the NCs: it is composed of a lipid bilayer made from extracellular vesicles (EVs) combined with other synthetic lipids and a peptide targeting the pancreatic tumor microenvironment. To complete the nanoconstruct therapeutic function, Gemcitabine, a first-line drug for pancreatic cancer treatment, was adsorbed on the ZnO-Gd NCs prior to the coating with the above-mentioned lipidic shell. The aim of this work is thus to strongly enhance the therapeutic capability of the final nanoconstruct, providing it with high biocompatibility, colloidal stability in biological media, efficient cargo loading and release properties, as well as active targeting for site-selective drug delivery. Furthermore, the magnetic properties of the ZnO-Gd NCs core can in future allow efficient in situ bioimaging capabilities based on Magnetic Resonance Imaging technique. The obtained nanoconstructs were tested on two different pancreatic cancer cell lines, i.e., BxPC-3 and the metastatic AsPC-1, proving high cell internalization levels, mediated by the targeting peptide exposed on the nanoconstruct. Cellular cytotoxicity assay performed on both cell lines dictated ~ 20% increased cell killing efficacy of Gemcitabine when delivered through the nanoconstruct rather than as a free drug. Taken together, our designed theranostic nanoconstruct can have a significant impact on the standard treatment of pancreatic cancer.
Collapse
|
5
|
Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. NANOSCALE ADVANCES 2022; 4:1868-1925. [PMID: 36133407 PMCID: PMC9419838 DOI: 10.1039/d1na00880c] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 05/22/2023]
Abstract
Extensive research in nanotechnology has been conducted to investigate new behaviours and properties of materials with nanoscale dimensions. ZnO NPs owing to their distinct physical and chemical properties have gained considerable importance and are hence investigated to a detailed degree for exploitation of these properties. This communication, at the outset, elaborates the various chemical methods of preparation of ZnO NPs, viz., the mechanochemical process, controlled precipitation, sol-gel method, vapour transport method, solvothermal and hydrothermal methods, and methods using emulsion and micro-emulsion environments. The paper further describes the green methods employing the use of plant extracts, in particular, for the synthesis of ZnO NPs. The modifications of ZnO with organic (carboxylic acid, silanes) and inorganic (metal oxides) compounds and polymer matrices have then been described. The multitudinous applications of ZnO NPs across a variety of fields such as the rubber industry, pharmaceutical industry, cosmetics, textile industry, opto-electronics and agriculture have been presented. Elaborative narratives on the photocatalytic and a variety of biomedical applications of ZnO have also been included. The ecotoxic impacts of ZnO NPs have additionally been briefly highlighted. Finally, efforts have been made to examine the current challenges and future scope of the synthetic modes and applications of ZnO NPs.
Collapse
Affiliation(s)
- Sauvik Raha
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
6
|
Cao D, Shu X, Zhu D, Liang S, Hasan M, Gong S. Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. NANO CONVERGENCE 2020; 7:14. [PMID: 32328852 PMCID: PMC7181468 DOI: 10.1186/s40580-020-00224-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
ZnO nanoparticles are widely used in biological, chemical, and medical fields, but their toxicity impedes their wide application. In this study, pristine ZnO NPs (~ 7 nm; ~ 18 nm; ~ 49 nm) and lipid-coated ZnO NPs (~ 13 nm; ~ 22 nm; ~ 52 nm) with different morphologies were prepared by chemical method and characterized by TEM, XRD, HRTEM, FTIR, and DLS. Our results showed that the lipid-coated ZnO NPs (~ 13 nm; ~ 22 nm; ~ 52 nm) groups improved the colloidal stability, prevented the aggregation and dissolution of nanocrystal particles in the solution, inhibited the dissolution of ZnO NPs into Zn2+ cations, and reduced cytotoxicity more efficiently than the pristine ZnO NPs (~ 7 nm; ~ 18 nm; ~ 49 nm). Compared to the lipid-coated ZnO NPs, pristine ZnO NPs (~ 7 nm; ~ 18 nm; ~ 49 nm) could dose-dependently destroy the cells at low concentrations. At the same concentration, ZnO NPs (~ 7 nm) exhibited the highest cytotoxicity. These results could provide a basis for the toxicological study of the nanoparticles and direct future investigations for preventing strong aggregation, reducing the toxic effects of lipid-bilayer and promoting the uptake of nanoparticles by HeLa cells efficiently.
Collapse
Affiliation(s)
- Dingding Cao
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Shengli Liang
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Sheng Gong
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| |
Collapse
|
7
|
Dumontel B, Susa F, Limongi T, Canta M, Racca L, Chiodoni A, Garino N, Chiabotto G, Centomo ML, Pignochino Y, Cauda V. ZnO nanocrystals shuttled by extracellular vesicles as effective Trojan nano-horses against cancer cells. Nanomedicine (Lond) 2019; 14:2815-2833. [PMID: 31747855 PMCID: PMC7610546 DOI: 10.2217/nnm-2019-0231] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effective application of nanoparticles in cancer theranostics is jeopardized by their aggregation in biological media, rapid degradation and clearance. The design of biomimetic nanoconstructs with enhanced colloidal stability and non-immunogenicity is therefore essential. We propose naturally stable cell-derived extracellular vesicles to encapsulate zinc oxide (ZnO) nanocrystals as efficacious nanodrugs, to obtain highly biomimetic and stable Trojan nano-horses (TNHs). Materials & methods Coupling efficiency, biostability, cellular cytotoxicity and internalization were tested. Results In vitro studies showed a high internalization of TNHs into cancer cells and efficient cytotoxic activity thanks to ZnO intracellular release. Conclusion TNHs represent an efficient biomimetic platform for future nanotheranostic applications, with biomimetic extracellular vesicle-lipid envelope, facilitated ZnO cellular uptake and potential therapeutic implications.
Collapse
Affiliation(s)
- Bianca Dumontel
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Susa
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Canta
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Luisa Racca
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies - CSFT@POLITO, Istituto Italiano di Tecnologia, Via Livorno, 60, 10144 Turin, Italy
| | - Nadia Garino
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.,Center for Sustainable Future Technologies - CSFT@POLITO, Istituto Italiano di Tecnologia, Via Livorno, 60, 10144 Turin, Italy
| | - Giulia Chiabotto
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Str. Prov.le 142, km. 3.95, Candiolo (TO) 10060, Italy.,Department of Medical Sciences,University of Torino, Torino 10126, Italy
| | - Maria L Centomo
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Str. Prov.le 142, km. 3.95, Candiolo (TO) 10060, Italy.,Department of Oncology, University of Torino, Str. Prov.le 142,km. 3.95, Candiolo (TO) 10060, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Str. Prov.le 142, km. 3.95, Candiolo (TO) 10060, Italy.,Department of Oncology, University of Torino, Str. Prov.le 142,km. 3.95, Candiolo (TO) 10060, Italy
| | - Valentina Cauda
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
8
|
Ferrone E, Araneo R, Notargiacomo A, Pea M, Rinaldi A. ZnO Nanostructures and Electrospun ZnO-Polymeric Hybrid Nanomaterials in Biomedical, Health, and Sustainability Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1449. [PMID: 31614707 PMCID: PMC6835458 DOI: 10.3390/nano9101449] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
ZnO-based nanomaterials are a subject of increasing interest within current research, because of their multifunctional properties, such as piezoelectricity, semi-conductivity, ultraviolet absorption, optical transparency, and photoluminescence, as well as their low toxicity, biodegradability, low cost, and versatility in achieving diverse shapes. Among the numerous fields of application, the use of nanostructured ZnO is increasingly widespread also in the biomedical and healthcare sectors, thanks to its antiseptic and antibacterial properties, role as a promoter in tissue regeneration, selectivity for specific cell lines, and drug delivery function, as well as its electrochemical and optical properties, which make it a good candidate for biomedical applications. Because of its growing use, understanding the toxicity of ZnO nanomaterials and their interaction with biological systems is crucial for manufacturing relevant engineering materials. In the last few years, ZnO nanostructures were also used to functionalize polymer matrices to produce hybrid composite materials with new properties. Among the numerous manufacturing methods, electrospinning is becoming a mainstream technique for the production of scaffolds and mats made of polymeric and metal-oxide nanofibers. In this review, we focus on toxicological aspects and recent developments in the use of ZnO-based nanomaterials for biomedical, healthcare, and sustainability applications, either alone or loaded inside polymeric matrices to make electrospun composite nanomaterials. Bibliographic data were compared and analyzed with the aim of giving homogeneity to the results and highlighting reference trends useful for obtaining a fresh perspective about the toxicity of ZnO nanostructures and their underlying mechanisms for the materials and engineering community.
Collapse
Affiliation(s)
- Eloisa Ferrone
- Department of Electrical Engineering, University of Rome Sapienza, 00184 Rome, Italy.
| | - Rodolfo Araneo
- Department of Electrical Engineering, University of Rome Sapienza, 00184 Rome, Italy.
| | | | - Marialilia Pea
- Institute for Photonics and Nanotechnologies-CNR, 00156 Rome, Italy.
| | - Antonio Rinaldi
- Sustainability Department, ENEA, C.R. Casaccia, Santa Maria di Galeria, Rome 00123, Italy.
| |
Collapse
|
9
|
Orsi D, Rimoldi T, Pinelli S, Alinovi R, Goldoni M, Benecchi G, Rossi F, Cristofolini L. New CeF 3-ZnO nanocomposites for self-lighted photodynamic therapy that block adenocarcinoma cell life cycle. Nanomedicine (Lond) 2018; 13:2311-2326. [PMID: 30198424 DOI: 10.2217/nnm-2017-0399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To synthesize and characterize the performances of a new all-inorganic nanocomposite (NC) for self-lighted photodynamic therapy against cancer. This NC could allow radiotherapy doses to be reduced, as it enhances the effects of x-rays, generating cytotoxic reactive oxygen species as singlet oxygen. MATERIALS & METHODS The proposed NC combines CeF3 and ZnO; CeF3 absorbs 6-MeV x-rays and activates the photosensitizer ZnO. Characterization is performed by transmission electron microscopy (TEM), scanning-TEM, energy dispersive x-ray spectrometry and fluorescence spectroscopies. Efficiency on human adenocarcinoma cells (A549) was tested by fluorescence spectroscopy, cytofluorimetry, viability assays, clonogenic assays, cell cycle progression assays. RESULTS NC blocks A549's cell cycle before mitosis in the dark. Upon low-dose x-ray irradiation (2 Gy), reactive oxygen species/singlet oxygen are generated, further blocking cell cycle and reducing viability by 18% with respect to the sum of x-ray irradiation and NC dark activity. CONCLUSION These novel NCs promise to reduce doses in radiotherapy, helping to reduce unwanted side effects.
Collapse
Affiliation(s)
- Davide Orsi
- Department of Mathematical, Physical & Computer Sciences, University of Parma, 43124 Parma, Italy
| | - Tiziano Rimoldi
- Department of Mathematical, Physical & Computer Sciences, University of Parma, 43124 Parma, Italy
| | - Silvana Pinelli
- Department of Medicine & Surgery, University of Parma, 43126 Parma, Italy
| | - Rossella Alinovi
- Department of Medicine & Surgery, University of Parma, 43126 Parma, Italy
| | - Matteo Goldoni
- Department of Medicine & Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanna Benecchi
- Servizio di Fisica Sanitaria, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
| | - Francesca Rossi
- Consiglio Nazionale Ricerche, Istituto dei Materiali per l'Elettronica ed il Magnetismo IMEM-CNR, 43124 Parma, Italy
| | - Luigi Cristofolini
- Department of Mathematical, Physical & Computer Sciences, University of Parma, 43124 Parma, Italy
| |
Collapse
|
10
|
Huang X, Zheng X, Xu Z, Yi C. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int J Pharm 2017; 534:190-194. [DOI: 10.1016/j.ijpharm.2017.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023]
|
11
|
Dumontel B, Canta M, Engelke H, Chiodoni A, Racca L, Ancona A, Limongi T, Canavese G, Cauda V. Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer. J Mater Chem B 2017; 5:8799-8813. [PMID: 29456858 PMCID: PMC5779080 DOI: 10.1039/c7tb02229h] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022]
Abstract
The widespread use of ZnO nanomaterials for biomedical applications, including therapeutic drug delivery or stimuli-responsive activation, as well as imaging, imposes a careful control over the colloidal stability and long-term behaviour of ZnO in biological media. Moreover, the effect of ZnO nanostructures on living cells, in particular cancer cells, is still under debate. This paper discusses the role of surface chemistry and charge of zinc oxide nanocrystals, of around 15 nm in size, which influence their behaviour in biological fluids and effect on cancer cells. In particular, we address this problem by modifying the surface of pristine ZnO nanocrystals (NCs), rich of hydroxyl groups, with positively charged amino-propyl chains or, more innovatively, by self-assembling a double-lipidic membrane, shielding the ZnO NCs. Our findings show that the prolonged immersion in simulated human plasma and in the cell culture medium leads to highly colloidally dispersed ZnO NCs only when coated by the lipidic bilayer. In contrast, the pristine and amine-functionalized NCs form huge aggregates after already one hour of immersion. Partial dissolution of these two samples into potentially cytotoxic Zn2+ cations takes place, together with the precipitation of phosphate and carbonate salts on the NCs' surface. When exposed to living HeLa cancer cells, higher amounts of lipid-shielded ZnO NCs are internalized with respect to the other samples, thus showing a reduced cytotoxicity, based on the same amount of internalized NCs. These results pave the way for the development of novel theranostic platforms based on ZnO NCs. The new formulation of ZnO shielded with a lipid-bilayer will prevent strong aggregation and premature degradation into toxic by-products, and promote a highly efficient cell uptake for further therapeutic or diagnostic functions.
Collapse
Affiliation(s)
- B Dumontel
- Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Turin , Italy .
| | - M Canta
- Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Turin , Italy .
| | - H Engelke
- Department of Chemistry , Ludwig-Maximilians-University of Munich , Butenandtstrasse 11E , 81377 Munich , Germany
| | - A Chiodoni
- Center for Sustainable Future Technologies - CSFT@POLITO , Istituto Italiano di Tecnologia , Corso Trento 21 , 10129 Turin , Italy
| | - L Racca
- Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Turin , Italy .
| | - A Ancona
- Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Turin , Italy .
| | - T Limongi
- Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Turin , Italy .
| | - G Canavese
- Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Turin , Italy .
- Center for Sustainable Future Technologies - CSFT@POLITO , Istituto Italiano di Tecnologia , Corso Trento 21 , 10129 Turin , Italy
| | - V Cauda
- Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Turin , Italy .
- Center for Sustainable Future Technologies - CSFT@POLITO , Istituto Italiano di Tecnologia , Corso Trento 21 , 10129 Turin , Italy
| |
Collapse
|
12
|
Qiu J, Cheng R, Zhang J, Sun H, Deng C, Meng F, Zhong Z. Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules 2017; 18:3207-3214. [DOI: 10.1021/acs.biomac.7b00846] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Qiu
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Jian Zhang
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Gao T, Fan H, Wang X, Gao Y, Liu W, Chen W, Dong A, Wang YJ. Povidone-Iodine-Based Polymeric Nanoparticles for Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25738-25746. [PMID: 28707872 DOI: 10.1021/acsami.7b05622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As microbial contamination is becoming more and more serious, antibacterial agents play an important role in preventing and removing bacterial pathogens from microbial pollution in our daily life. To solve the issues with water solubility and antibacterial stability of PVP-I2 (povidone-iodine) as a strong antibacterial agent, we successfully obtain hydrophobic povidone-iodine nanoparticles (povidone-iodine NPs) by a two-step method related to the advantage of nanotechnology. First, the synthesis of poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate) nanoparticles, i.e., P(NVP-MMA) NPs, was controlled by tuning a feed ratio of NVP to MMA. Then, the products P(NVP-MMA) NPs were allowed to undergo a complexation reaction with iodine, resulting in the formation of a water-insoluble antibacterial material, povidone-iodine NPs. It is found that the feed ratio of NVP to MMA has an active effect on morphology, chemical composition, molecular weight, and hydrophilic-hydrophobic properties of the P(NVP-MMA) copolymer after some technologies, such as SEM, DLS, elemental analysis, 1H NMR, GPC, and the contact angle test, were used in the characterizations. The antibacterial property of povidone-iodine NPs was investigated by using Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) as model bacteria with the colony count method. Interestingly, three products, such as glue, ink, and dye, after the incorporation of povidone-iodine NPs, show significant antibacterial properties. It is believed that, with the advantage of nanoscale morphology, the final povidone-iodine NPs should have great potential for utilization in various fields where antifouling and antibacterial properties are highly required.
Collapse
Affiliation(s)
- Tianyi Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Hongbo Fan
- The School of Environment and Civil Engineering, Dongguan University of Technology , No. 1 Daxue Road, Songshan Lake, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Xinjie Wang
- Jiujiang Sixth People's Hospital , 145 Qianjin East Road, Lianxi District, Jiujiang, Jiangxi Province 332005, People's Republic of China
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Wanjun Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Yan-Jie Wang
- The School of Environment and Civil Engineering, Dongguan University of Technology , No. 1 Daxue Road, Songshan Lake, Dongguan, Guangdong Province 523808, People's Republic of China
- Department of Chemical and Biological Engineering, University of British Columbia , 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
14
|
Bayrami A, Parvinroo S, Habibi-Yangjeh A, Rahim Pouran S. Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:730-739. [DOI: 10.1080/21691401.2017.1337025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Abolfazl Bayrami
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shadi Parvinroo
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shima Rahim Pouran
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Wang X, Zhang M, Zhang L, Li L, Li S, Wang C, Su Z, Yuan Y, Pan W. Designed Synthesis of Lipid-Coated Polyacrylic Acid/Calcium Phosphate Nanoparticles as Dual pH-Responsive Drug-Delivery Vehicles for Cancer Chemotherapy. Chemistry 2017; 23:6586-6595. [DOI: 10.1002/chem.201700060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Wang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Manjie Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Lu Li
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Shengnan Li
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Chungang Wang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Zhongmin Su
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Yue Yuan
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Weisan Pan
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| |
Collapse
|
16
|
Khanal D, Kondyurin A, Hau H, Knowles JC, Levinson O, Ramzan I, Fu D, Marcott C, Chrzanowski W. Biospectroscopy of Nanodiamond-Induced Alterations in Conformation of Intra- and Extracellular Proteins: A Nanoscale IR Study. Anal Chem 2016; 88:7530-8. [DOI: 10.1021/acs.analchem.6b00665] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dipesh Khanal
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Alexey Kondyurin
- School
of Physics, The University of Sydney, NSW 2006, Australia
| | - Herman Hau
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Jonathan C. Knowles
- Division
of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, U.K
| | | | - Iqbal Ramzan
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Dong Fu
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Curtis Marcott
- Light Light Solutions, P.O. Box 81486, Athens, Georgia 30608-1484, United States
| | - Wojciech Chrzanowski
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
- Australian
Institute of Nanoscale Science and Technology, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Wu M, Wang Q, Zhang D, Liao N, Wu L, Huang A, Liu X. Magnetite nanocluster@poly(dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo. Colloids Surf B Biointerfaces 2016; 141:467-475. [DOI: 10.1016/j.colsurfb.2016.02.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 11/26/2022]
|
18
|
Cai Q, Gao Y, Gao T, Lan S, Simalou O, Zhou X, Zhang Y, Harnoode C, Gao G, Dong A. Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10109-10120. [PMID: 27042940 DOI: 10.1021/acsami.5b11573] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Zinc oxides have gained exciting achievements in antimicrobial fields because of their advantageous properties, whereas their biological effects on bacteria are currently underexplored. In this study, biological effects of flower-shaped nano zinc oxides on bacteria were systematically investigated. Zinc oxide nanoflowers with controllable morphologies (viz., rod flowers, fusiform flowers, and petal flowers) were synthesized by modulating merely base type and concentration using the hydrothermal process. Their antibacterial power is in an order of petal flowers > fusiform flowers > rod flowers because of their differences in microscopic parameters such as specific surface area, pore size, and Zn-polar plane, etc. More importantly, the role of morphology in influencing biological effect on bacteria was examined, focusing on the morphology-induced effect on integrality of cell wall, permeability of cell membrane, DNA cleavage, etc. As for cytotoxicity, all petal flowers, fusiform flowers, and rod flowers show trivial cytotoxicity to the Hela cells. This work provides a guide for enhancing biological effect of the biocides on pathogenic bacteria by the morphological modulation.
Collapse
Affiliation(s)
- Qian Cai
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Tianyi Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Shi Lan
- College of Science, Inner Mongolia Agricultural University , Hohhot 010018, People's Republic of China
| | - Oudjaniyobi Simalou
- Département de Chimie, Faculté Des Sciences (FDS), Université de Lomé (UL) , Lome BP 1515, Togo
| | - Xinyue Zhou
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Chokto Harnoode
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Ge Gao
- College of Chemistry, Jilin University , Changchun 130021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| |
Collapse
|