1
|
Franier BDL, Thompson M. Interaction of Staphylococcus aureus and Candida albicans with surface-modified silica studied by ultra-high frequency acoustic wave biosensor. RSC Adv 2024; 14:29658-29664. [PMID: 39297046 PMCID: PMC11408991 DOI: 10.1039/d4ra05532b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024] Open
Abstract
In this work the bacteria S. aureus and fungi C. albicans were allowed to interact with quartz-based biosensor devices under different flow rates, with and without an anti-fouling coating. These experiments were conducted in order to determine if the level of fouling observed was affected by the flow rate. The biosensor used was an ultra-high frequency acoustic wave device (EMPAS) for investigation of device surface initial interaction of S. aureus or C. albicans under flow of PBS buffer at flow rates between 50 and 200 μL min-1. Surface-bound microbes were also visualized by fluorescence microscopy following these experiments. S. aureus bacteria was able to foul the bare quartz sensors at each flow rate tested, with the greatest degree of fouling observed at a flow rate of 100 μL min-1. C. albicans showed far less fouling of bare devices with the maximum fouling observed at a flow rate of 75 μL min-1. Antifouling MEG-OH coated sensors showed greatly reduced fouling for S. aureus, with between a 90 and 99% reduction in observed frequency change depending on the flow rate used, and between 22 and 90% for C. albicans. Fluorescence images of the microbes following the experiments correlated well with the frequency data, showing a marked decrease in the amount of bacteria seen on MEG-OH-coated surfaces compared to controls.
Collapse
Affiliation(s)
- Brian De La Franier
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Michael Thompson
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| |
Collapse
|
2
|
Liu P, Wang B, Chen Y. Flexible Poly(vinyl chloride) with Durable Antibiofouling Property via Blending Star-Shaped Amphiphilic Poly(ε-caprolactone)- block-poly(methacryloxyethyl sulfobetaine). ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38050820 DOI: 10.1021/acsami.3c16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible poly(vinyl chloride) (PVC) plastics have been widely used in medical devices, but the preparation of antibiofouling flexible PVC materials that can maintain their antibiofouling performance when suffering deformation is still a challenge. In this work, we synthesized a series of amphiphilic star-shaped three-arm block copolymers SPCL-b-PSB, consisting of hydrophobic inner blocks poly(ε-caprolactone) (PCL) and hydrophilic outer blocks poly(methacryloxyethyl sulfobetaine) (PSB). Then, flexible PVC films were prepared by blending SPCL-b-PSB with PVC and plasticizer. Benefiting from the specific star-shaped topological structure of SPCL-b-PSB, hydrophilic PSB blocks of the copolymer could efficiently migrate to the surface of the film via annealing treatment, which give the film surface excellent hydrophilicity, while the latch-like entanglements between hydrophobic PCL blocks and PVC give the hydrophilic surface excellent stability. Antibiofouling properties of the blended films were investigated. The optimized blended film could reduce ∼94% of bovine serum albumin adsorption, ∼ 87% of lysozyme adsorption, and ∼89% of platelet adhesion and resist bacterial adhesion effectively. What is more, the blended films could maintain their antibiofouling performance when suffering stretching, rubbing, or bending. More than 86% of bovine serum albumin adsorption could be reduced, even when the film was stretched by 50%. This work provides a new strategy for the preparation of durable antibiofouling flexible plastics.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Bin Wang
- Department of Chemistry, School of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Yu Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
3
|
Ahmadi S, Lotay N, Thompson M. Affinity-based electrochemical biosensor with antifouling properties for detection of lysophosphatidic acid, a promising early-stage ovarian cancer biomarker. Bioelectrochemistry 2023; 153:108466. [PMID: 37244204 DOI: 10.1016/j.bioelechem.2023.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Electrochemical techniques are considered to be highly sensitive, capable of fast response and can be easily miniaturized, properties which can aid with regard to the fabrication of compact point-of-care medical devices; however, the main challenge in developing such a tool is overcoming a ubiquitous, problematic phenomenon known as non-specific adsorption (NSA). NSA is due to the fouling of non-target molecules in the blood on the recognition surface of the device. To overcome NSA, we have developed an affinity-based electrochemical biosensor using medical-grade stainless steel electrodes and following a unique and novel strategy using silane-based interfacial chemistry to detect lysophosphatidic acid (LPA), a highly promising biomarker, which was found to be elevated in 90 % of stage I OC patients and gradually increases as the disease progresses to later stages. The biorecognition surface was developed using the affinity-based gelsolin-actin system, which was previously investigated by our group to detect LPA using fluorescence spectroscopy. We demonstrate the capability of this label-free biosensor to detect LPA in goat serum with a detection limit of 0.7 µM as a proof-of-concept for the early diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Soha Ahmadi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Navina Lotay
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
4
|
De La Franier B, Asker D, Hatton B, Thompson M. Long-Term Reduction of Bacterial Adhesion on Polyurethane by an Ultra-Thin Surface Modifier. Biomedicines 2022; 10:979. [PMID: 35625716 PMCID: PMC9138992 DOI: 10.3390/biomedicines10050979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Indwelling urinary catheters are employed widely to relieve urinary retention in patients. A common side effect of the use of these catheters is the formation of urinary tract infections (UTIs), which can lead not only to severe medical complications, but even to death. A number of approaches have been used to attempt reduction in the rate of UTI development in catheterized patients, which include the application of antibiotics and modification of the device surface by coatings. Many of these coatings have not seen use on catheters in medical settings due to either the high cost of their implementation, their long-term stability, or their safety. In previous work, it has been established that the simple, stable, and easily applicable sterilization surface coating 2-(3-trichlorosilylpropyloxy)-ethyl hydroxide (MEG-OH) can be applied to polyurethane plastic, where it greatly reduces microbial fouling from a variety of species for a 1-day time period. In the present work, we establish that this coating is able to remain stable and provide a similarly large reduction in fouling against Escherichia coli and Staphylococcus aureus for time periods in an excess of 30 days. This non-specific coating functioned against both Gram-positive and Gram-negative bacteria, providing a log 1.1 to log 1.9 reduction, depending on the species and day. This stability and continued efficacy greatly suggest that MEG-OH may be capable of providing a solution to the UTI issue which occurs with urinary catheters.
Collapse
Affiliation(s)
- Brian De La Franier
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada;
| | - Dalal Asker
- Department of Materials Science, University of Toronto, 184 College Street, Toronto, ON M5S 3E4, Canada; or (D.A.); (B.H.)
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Benjamin Hatton
- Department of Materials Science, University of Toronto, 184 College Street, Toronto, ON M5S 3E4, Canada; or (D.A.); (B.H.)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada;
| |
Collapse
|
5
|
Spagnolo S, De La Franier B, Davoudian K, Hianik T, Thompson M. Detection of E. coli Bacteria in Milk by an Acoustic Wave Aptasensor with an Anti-Fouling Coating. SENSORS 2022; 22:s22051853. [PMID: 35270999 PMCID: PMC8914748 DOI: 10.3390/s22051853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Milk is a significant foodstuff around the world, being produced and consumed in large quantities. The safe consumption of milk requires that the liquid has an acceptably low level of microbial contamination and has not been subjected to spoiling. Bacterial safety limits in milk vary by country but are typically in the thousands per mL of sample. To rapidly determine if samples contain an unsafe level of bacteria, an aptamer-based sensor specific to Escherichia coli bacteria was developed. The sensor is based on an ultra-high frequency electromagnetic piezoelectric acoustic sensor device (EMPAS), with the aptamer being covalently bound to the sensor surface by the anti-fouling linker, MEG-Cl. The sensor is capable of the selective measurement of E. coli in PBS and in cow’s milk samples down to limits of detection of 35 and 8 CFU/mL, respectively, which is well below the safe limits for commercial milk products. This sensing system shows great promise for the milk industry for the purpose of rapid verification of product safety.
Collapse
Affiliation(s)
- Sandro Spagnolo
- Faculty of Mathematics, Physics and Information, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia; (S.S.); (T.H.)
| | - Brian De La Franier
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (B.D.L.F.); (K.D.)
| | - Katharina Davoudian
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (B.D.L.F.); (K.D.)
| | - Tibor Hianik
- Faculty of Mathematics, Physics and Information, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia; (S.S.); (T.H.)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (B.D.L.F.); (K.D.)
- Correspondence: ; Tel.: +1-416-978-3575
| |
Collapse
|
6
|
De La Franier B, Thompson M. Surface Adsorption of the Cancer Biomarker Lysophosphatidic Acid in Serum Studied by Acoustic Wave Biosensor. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4158. [PMID: 34361352 PMCID: PMC8347737 DOI: 10.3390/ma14154158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
The thickness shear mode acoustic wave device is of interest for the sensing of biomarkers for diseases in various biological fluids, but suffers from the issue of non-specific adsorption of compounds other than those of interest to the electrode surface, thus affecting the device's output. The aim of this present study was to determine the level of non-specific adsorption on gold electrodes from serum samples with added ovarian cancer biomarker lysophosphatidic acid in the presence of a surface anti-fouling layer. The latter was an oligoethylene molecule with thiol group for attachment to the electrode surface. It was found that the anti-fouling layer had a minimal effect on the level of both adsorption of components from serum and the marker. This result stands in sharp contrast to the analogous monolayer employed for anti-fouling reduction on silica.
Collapse
Affiliation(s)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada;
| |
Collapse
|
7
|
Yang T, De La Franier B, Thompson M. Anti-Thrombogenicity Study of a Covalently-Attached Monolayer on Stent-Grade Stainless Steel. MATERIALS 2021; 14:ma14092342. [PMID: 33946387 PMCID: PMC8125229 DOI: 10.3390/ma14092342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Implantable devices fabricated from austenitic type 316L stainless steel have been employed significantly in medicine, principally because the material displays excellent mechanical characteristics and corrosion resistance. It is well known, however, that interaction of exposure of such a material to blood can initiate platelet adhesion and blood coagulation, leading to a harmful medical condition. In order to prevent undesirable surface platelet adhesion on biomaterials employed in procedures such as renal dialysis, we developed an ultrathin anti-thrombogenic covalently attached monolayer based on monoethylene glycol silane chemistry. This functions by forming an interstitial hydration layer which displays restricted mobility in the prevention of surface fouling. In the present work, the promising anti-thrombogenic properties of this film are examined with respect to platelet aggregation on 316L austenitic stainless steel exposed to whole human blood. Prior to exposure with blood, all major surface modification steps were examined by X-ray photoelectron spectroscopic analysis and surface free-angle measurement by contact angle goniometry. End-stage anti-thrombogenicity detection after 20 min of blood exposure at 100 s-1, 300 s-1, 600 s-1, 750 s-1, and 900 s-1 shear rates revealed that a significant reduction (>90%) of platelet adhesion and aggregation was achieved for surface-modified steel, compared with untreated material. This result is confirmed by experiments conducted in real time for 60-minute exposure to blood at 100 s-1, 600 s-1, and 900 s-1 shear rates.
Collapse
|
8
|
Assembling Surface Linker Chemistry with Minimization of Non-Specific Adsorption on Biosensor Materials. MATERIALS 2021; 14:ma14020472. [PMID: 33478142 PMCID: PMC7835736 DOI: 10.3390/ma14020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
The operation of biosensors requires surfaces that are both highly specific towards the target analyte and that are minimally subject to fouling by species present in a biological fluid. In this work, we further examined the thiosulfonate-based linker in order to construct robust and durable self-assembling monolayers (SAMs) onto hydroxylated surfaces such as silica. These SAMs are capable of the chemoselective immobilization of thiol-containing probes (for analytes) under aqueous conditions in a single, straightforward, reliable, and coupling-free manner. The efficacy of the method was assessed through implementation as a biosensing interface for an ultra-high frequency acoustic wave device dedicated to the detection of avidin via attached biotin. Fouling was assessed via introduction of interfering bovine serum albumin (BSA), IgG antibody, or goat serum. Improvements were investigated systematically through the incorporation of an oligoethylene glycol backbone employed together with a self-assembling diluent without a functional distal group. This work demonstrates that the incorporation of a diluent of relatively short length is crucial for the reduction of fouling. Included in this work is a comparison of the surface attachment of the linker to Si3N4 and AlN, both materials used in sensor technology.
Collapse
|
9
|
De La Franier B, Asker D, van den Berg D, Hatton B, Thompson M. Reduction of microbial adhesion on polyurethane by a sub-nanometer covalently-attached surface modifier. Colloids Surf B Biointerfaces 2021; 200:111579. [PMID: 33517152 DOI: 10.1016/j.colsurfb.2021.111579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
Indwelling urinary catheters are a common medical device used to relieve urinary retention. Many patients who undergo urinary catheterization develop urinary tract infections (UTIs), which can lead to severe medical complications and high cost of subsequent treatment. Recent years have seen a number of attempts at reducing the rate of UTIs in catheterized patients via catheter surface modifications. In this work, a low cost, robust anti-thrombogenic, and sterilizable anti-fouling layer based on a covalently-bound monoethylene glycol hydroxide (MEG-OH) was attached to polyurethane, a polymeric material commonly used to fabricate catheters. Modified polyurethane tubing was compared to bare tubing after exposure to a wide spectrum of pathogens including Gram-negative bacteria (Pesudomonas aeruginosa, Escherichia coli), Gram-positive bacteria (Staphylococcus aureus) and a fungus (Candida albicans). It has been demonstrated that the MEG-OH monolayer was able to significantly reduce the amount of adhesion of pathogens present on the material surface, with between 85 and 96 % reduction after 24 h of exposure. Additionally, similar reductions in surface fouling were observed following autoclave sterilization, long term storage of samples in air, and longer exposure up to 3 days.
Collapse
Affiliation(s)
- Brian De La Franier
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Dalal Asker
- Department of Materials Science, University of Toronto, 140-184 College St, Toronto, Ontario, M5S 3E4, Canada; Food Science & Technology Department, Faculty of Agriculture, Alexandria University, 21545 - El-Shatby, Alexandria, Egypt
| | - Desmond van den Berg
- Department of Materials Science, University of Toronto, 140-184 College St, Toronto, Ontario, M5S 3E4, Canada
| | - Benjamin Hatton
- Department of Materials Science, University of Toronto, 140-184 College St, Toronto, Ontario, M5S 3E4, Canada
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
10
|
Kinio S, Mills JK. Effects of dielectrophoresis on thrombogenesis in human whole blood. Electrophoresis 2017; 38:1755-1763. [PMID: 28429819 DOI: 10.1002/elps.201600451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 02/02/2023]
Abstract
Thrombogenesis (blood clot formation) is a major barrier to the development of biomedical devices that interface with blood. Although state-of-the-art chemically and pharmacologically mediated clot mitigation strategies are effective, some limitations of such approaches include depletion of active agents, or adverse reactions in patients. Increased clotting protein adsorption and platelet adhesion, which occur when artificial surfaces are exposed to blood result in enhanced clot formation on artificial surfaces. It is hypothesized that repelling proteins and platelets using dielectrophoresis (DEP), a contact-free particle manipulation technique, will reduce clot formation in biomedical devices. In this paper, the effect of DEP on thrombogenesis in human blood is investigated. Undiluted whole blood from human donors is pumped through microchannels at a physiological shear rate (400 s-1 ). Experiments are performed by applying 0 V, 0.5 Vrms , 2 Vrms , and 3 Vrms to electrodes in the channel. Clot formation is observed to decrease in experiments in which DEP electrodes are active (average of 6% coverage @ 0V reduced to 0.08% coverage @ 3 Vrms ). Repulsion is more effective at higher voltages. DEP causes a quantifiable reduction in microscopic and macroscopic clot formation in PDMS microchannels.
Collapse
Affiliation(s)
- Steven Kinio
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - James K Mills
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|