2
|
Bastug Azer B, Gulsaran A, Pennings JR, Saritas R, Kocer S, Bennett JL, Devdas Abhang Y, Pope MA, Abdel-Rahman E, Yavuz M. A Review: TiO2 based photoelectrocatalytic chemical oxygen demand sensors and their usage in industrial applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
3
|
Jin L, Liu B, Louis ME, Li G, He J. Highly Crystalline Mesoporous Titania Loaded with Monodispersed Gold Nanoparticles: Controllable Metal-Support Interaction in Porous Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9617-9627. [PMID: 32003212 DOI: 10.1021/acsami.9b20231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the syntheses of mesoporous Au/TiO2 hybrid photocatalysts with ordered and crystalline frameworks using co-assembly of organosilane-containing colloidal amphiphile micelles (CAMs) and poly(ethylene oxide)-modified gold nanoparticles (AuNPs) as templates. The assembled CAMs can convert to inorganic silica during calcination at elevated temperatures, providing extraordinary thermal stability to preserve the porosity of TiO2 and the nanostructures of AuNPs. Well-defined AuNPs supported within mesoporous TiO2 (Au@mTiO2) can be prepared using thermal annealing at temperatures up to 800 °C. High-temperature treatment (≥500 °C) under air is found to not only improve the crystallinity of TiO2 but also induce oxidative strong metal-support interactions (SMSIs) at Au/TiO2 interfaces. For oxidative SMSIs, the surface oxidation of AuNPs can generate positively charged Auδ+ species, while TiO2 gets reduced simultaneously. Using photocatalytic oxidation of benzyl alcohol as a model reaction, Au@mTiO2 calcined at 600 °C for 12 h exhibited the best activity under UV irradiation, while Au@mTiO2 calcined at 600 °C for 2 h showed the best activity under visible light. The delicate balance between the crystallinity and porosity of TiO2 and the SMSIs at Au-TiO2 interfaces is found to impact the photocatalytic activity of these hybrid materials.
Collapse
Affiliation(s)
- Lei Jin
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ben Liu
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Michael E Louis
- Department of Chemistry , University of New Hampshire , Durham , New Hampshire 03824 , United States
| | - Gonghu Li
- Department of Chemistry , University of New Hampshire , Durham , New Hampshire 03824 , United States
| | - Jie He
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
- Polymer Program, Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| |
Collapse
|
5
|
Malekzad H, Zangabad PS, Mohammadi H, Sadroddini M, Jafari Z, Mahlooji N, Abbaspour S, Gholami S, Ghanbarpoor M, Pashazadeh R, Beyzavi A, Karimi M, Hamblin MR. Noble metal nanostructures in optical biosensors: Basics, and their introduction to anti-doping detection. Trends Analyt Chem 2018; 100:116-135. [PMID: 29731530 PMCID: PMC5933885 DOI: 10.1016/j.trac.2017.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination and quantification of illicit drugs in anti-doping applications. The important classes of illicit drugs include anabolic steroids, opioids, stimulants, and peptide hormones. The main emphasis is on the advantages that noble metal nano-particles bring to optical biosensors for signal enhancement and the development of highly sensitive (label-free) biosensors. In the near future, such optical biosensors may be an invaluable substitute for conventional anti-doping detection methods such as chromatography-based approaches, and may even be commercialized for routine anti-doping tests.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Mohammadi
- Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Mohsen Sadroddini
- Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Zahra Jafari
- Department of Food Science and Technology, College of Agriculture and Food Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Niloofar Mahlooji
- Department of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Somaye Abbaspour
- School of Science and Engineering, Sharif University of Technology, International Campus, Iran
| | | | | | - Rahim Pashazadeh
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran
| | - Ali Beyzavi
- Koch Institute of MIT, 500 Main Street, Cambridge MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Center, Teheran Medical Sciences Branch, Islamic Azad University, Tehran Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael R. Hamblin
- Applied Biotechnology Research Center, Teheran Medical Sciences Branch, Islamic Azad University, Tehran Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Mei LP, Jiang XY, Yu XD, Zhao WW, Xu JJ, Chen HY. Cu Nanoclusters-Encapsulated Liposomes: Toward Sensitive Liposomal Photoelectrochemical Immunoassay. Anal Chem 2018; 90:2749-2755. [DOI: 10.1021/acs.analchem.7b04789] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Li-Ping Mei
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yuan Jiang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Dong Yu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department
of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Wang Z, Cao M, Yang L, Liu D, Wei D. Hemin/Au nanorods/self-doped TiO2nanowires as a novel photoelectrochemical bioanalysis platform. Analyst 2017; 142:2805-2811. [DOI: 10.1039/c7an00783c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive photoelectrochemical platform for GSH was developed by modifying self-doped TiO2nanowires with mixed Au nanorods at two different aspect ratios as the core sensing unit and hemin for recognition.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Min Cao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lei Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Donghua Liu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
9
|
Wang Z, Zhang H, Xu L, Wang Z, Wang D, Liu X, Chen M. Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties. RSC Adv 2016. [DOI: 10.1039/c6ra15398d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties have been conveniently fabricated via a novel and effective laser-induced strategy.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Hua Zhang
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Linlin Xu
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Ziwei Wang
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Dameng Wang
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Xiangdong Liu
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Ming Chen
- School of Physics
- Shandong University
- Jinan 250100
- China
| |
Collapse
|