1
|
Xuan NTT, Le DV, Thanh MT, Son LD, Doanh NV, Thu DM, Tuan NT, Duy TK, Thang TD, Nien LV. A comparison between the enzymatic oxidation method and headspace gas chromatography with a flame ionization detector in the determination of postmortem blood ethanol. Forensic Sci Med Pathol 2024; 20:878-885. [PMID: 38376759 DOI: 10.1007/s12024-024-00791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
Ethanol is the most commonly encountered substance in forensic toxicology. Determining blood alcohol concentration (BAC) in autopsies accounts for the majority of work in forensic diagnosis. The most common method to assess BAC is the enzymatic oxidation method because of its low cost, easy operation, and high throughput. Still, the elevated lactate and lactate dehydrogenase (LDH) levels in postmortem blood may affect accuracy. This study uses headspace gas chromatography with a flame ionization detector (HS-GC/FID) to assess the interference of lactate and LDH levels on BAC in 110 autopsied blood samples determined by the enzymatic oxidation method. The results showed that lactate and LDH levels in postmortem blood were higher than in normal blood. There was a weak correlation between the lactate levels and BAC difference (r = 0.23, p < 0.05) and a strong correlation between LDH levels and BAC difference (r = 0.67, p < 0.001). The differentiation of BAC between the enzymatic oxidation method and HS-GC/FID was significant (p < 0.001), confirming the interference significantly. All postmortem blood samples with lactate and LDH levels higher than regular lead to a positive error in determining BAC by enzymatic oxidation method. The study results suggest that the HS-GC/FID method should be used to determine BAC in postmortem blood samples instead of the enzymatic oxidation method to avoid mistakes in forensic diagnosis.
Collapse
Affiliation(s)
| | - Dinh Vu Le
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.
| | - Mai Thi Thanh
- Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Le Dinh Son
- Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Viet Doanh
- Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Dang Minh Thu
- Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Trong Tuan
- Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Trang Khanh Duy
- Forensic Medicine Center of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Tran Dinh Thang
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh, 700000, Vietnam
| | - Lam Vinh Nien
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
2
|
Cláudia-Ferreira A, Barbosa DJ, Saegeman V, Fernández-Rodríguez A, Dinis-Oliveira RJ, Freitas AR. The Future Is Now: Unraveling the Expanding Potential of Human (Necro)Microbiome in Forensic Investigations. Microorganisms 2023; 11:2509. [PMID: 37894167 PMCID: PMC10608847 DOI: 10.3390/microorganisms11102509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The relevance of postmortem microbiological examinations has been controversial for decades, but the boom in advanced sequencing techniques over the last decade is increasingly demonstrating their usefulness, namely for the estimation of the postmortem interval. This comprehensive review aims to present the current knowledge about the human postmortem microbiome (the necrobiome), highlighting the main factors influencing this complex process and discussing the principal applications in the field of forensic sciences. Several limitations still hindering the implementation of forensic microbiology, such as small-scale studies, the lack of a universal/harmonized workflow for DNA extraction and sequencing technology, variability in the human microbiome, and limited access to human cadavers, are discussed. Future research in the field should focus on identifying stable biomarkers within the dominant Bacillota and Pseudomonadota phyla, which are prevalent during postmortem periods and for which standardization, method consolidation, and establishment of a forensic microbial bank are crucial for consistency and comparability. Given the complexity of identifying unique postmortem microbial signatures for robust databases, a promising future approach may involve deepening our understanding of specific bacterial species/strains that can serve as reliable postmortem interval indicators during the process of body decomposition. Microorganisms might have the potential to complement routine forensic tests in judicial processes, requiring robust investigations and machine-learning models to bridge knowledge gaps and adhere to Locard's principle of trace evidence.
Collapse
Affiliation(s)
- Ana Cláudia-Ferreira
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
| | - Daniel José Barbosa
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Veroniek Saegeman
- Department of Infection Control and Prevention, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Amparo Fernández-Rodríguez
- Microbiology Laboratory, Biology Service, Institute of Toxicology and Forensic Sciences, 28232 Madrid, Spain;
| | - Ricardo Jorge Dinis-Oliveira
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana R. Freitas
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | |
Collapse
|
3
|
Franceschetti L, Amadasi A, Bugelli V, Bolsi G, Tsokos M. Estimation of Late Postmortem Interval: Where Do We Stand? A Literature Review. BIOLOGY 2023; 12:783. [PMID: 37372068 PMCID: PMC10295266 DOI: 10.3390/biology12060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Estimating time since death can be challenging for forensic experts, and is one of the most challenging activities concerning the forensic world. Various methods have been assessed to calculate the postmortem interval on dead bodies in different stages of decomposition and are currently widely used. Nowadays, the only well-recognized dating technique is carbon-14 radioisotope measurement, whereas other methods have been tested throughout the years involving different disciplines with different and sometimes not univocal results. Today, there is no precise and secure method to precisely determine time since death, and late postmortem interval estimation remains one of the most debated topics in forensic pathology. Many proposed methods have shown promising results, and it is desirable that with further studies some of them might become acknowledged techniques to resolve such a difficult and important challenge. The present review aims at presenting studies about the different techniques that have been tested in order to find a valuable method for estimating time since death for skeletal remains. By providing a comprehensive overview, the purpose of this work is to offer readers new perspectives on postmortem interval estimation and to improve current practice in the management of skeletal remains and decomposed bodies.
Collapse
Affiliation(s)
- Lorenzo Franceschetti
- Istituto di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Luigi Mangiagalli 37, 20133 Milan, Italy;
| | - Alberto Amadasi
- Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Turmstr. 21 (Haus M), 10559 Berlin, Germany
| | - Valentina Bugelli
- South-East Tuscany Local Health Unit, Department of Legal Medicine, via Cimabue 109, 58100 Grosseto, Italy;
| | - Giulia Bolsi
- Istituto di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Luigi Mangiagalli 37, 20133 Milan, Italy;
| | - Michael Tsokos
- Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Turmstr. 21 (Haus M), 10559 Berlin, Germany
| |
Collapse
|
4
|
Chansaengpetch N, Worasuwannarak W, Worawichawong S. Methamphetamine-induced profound rhabdomyolysis and myoglobin cast nephropathy: A case report and a literature review. J Forensic Leg Med 2023; 96:102530. [PMID: 37119546 DOI: 10.1016/j.jflm.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
A 46-year-old male with a history of substance abuse was found dead in custody 30 hours post incarceration for a minor offense. The scene demonstrates the body lying in a prone position in the cell room, locked from the outside. No signs of violence were found at the scene. External examination revealed no significant injuries, except for multiple minor contusions and abrasions. The autopsy demonstrated only a moderate degree of bilateral pulmonary edema. No internal injuries were found, except for fractures in the three lower left ribs. Dark reddish-brown urine was detected in the urinary bladder. Histological examination revealed a diffuse tubular injury with intraluminal eosinophilic granular casts. The myoglobin cast demonstrated pale PAS staining with a granular appearance, Masson Trichrome staining demonstrated fuschinophilic deposits on the casts, and immunoperoxidase staining for myoglobin was strongly positive in the casts (the images will be displayed). Blood myoglobin and creatine kinase levels were elevated. These findings revealed profound rhabdomyolysis caused by several factors. Blood toxicology tests revealed lethal methamphetamine and amphetamine levels. All the findings were consistent with methamphetamine-induced severe rhabdomyolysis. Therefore, forensic pathologists should carefully search for gross and histological findings and conduct thorough laboratory investigations to diagnose this condition for complete medicolegal examination.
Collapse
Affiliation(s)
- Nantapong Chansaengpetch
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wisarn Worasuwannarak
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Suchin Worawichawong
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Bone Diagenesis in Short Timescales: Insights from an Exploratory Proteomic Analysis. BIOLOGY 2021; 10:biology10060460. [PMID: 34071025 PMCID: PMC8224596 DOI: 10.3390/biology10060460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
The evaluation of bone diagenetic phenomena in archaeological timescales has a long history; however, little is known about the origins of the microbes driving bone diagenesis, nor about the extent of bone diagenesis in short timeframes-such as in forensic contexts. Previously, the analysis of non-collagenous proteins (NCPs) through bottom-up proteomics revealed the presence of potential biomarkers useful in estimating the post-mortem interval (PMI). However, there is still a great need for enhancing the understanding of the diagenetic processes taking place in forensic timeframes, and to clarify whether proteomic analyses can help to develop better models for estimating PMI reliably. To address these knowledge gaps, we designed an experiment based on whole rat carcasses, defleshed long rat bones, and excised but still-fleshed rat limbs, which were either buried in soil or exposed on a clean plastic surface, left to decompose for 28 weeks, and retrieved at different time intervals. This study aimed to assess differences in bone protein relative abundances for the various deposition modalities and intervals. We further evaluated the effects that extrinsic factors, autolysis, and gut and soil bacteria had on bone diagenesis via bottom-up proteomics. Results showed six proteins whose abundance was significantly different between samples subjected to either microbial decomposition (gut or soil bacteria) or to environmental factors. In particular, muscle- and calcium-binding proteins were found to be more prone to degradation by bacterial attack, whereas plasma and bone marrow proteins were more susceptible to exposure to extrinsic agents. Our results suggest that both gut and soil bacteria play key roles in bone diagenesis and protein decay in relatively short timescales, and that bone proteomics is a proficient resource with which to identify microbially-driven versus extrinsically-driven diagenesis.
Collapse
|
6
|
Bisker C, Taylor G, Carney H, Ralebitso-Senior TK. A Combined Application of Molecular Microbial Ecology and Elemental Analyses Can Advance the Understanding of Decomposition Dynamics. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.605817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introducing animal carbon-source to soil initiates biochemical and microbial processes that lead to its decomposition and recycling, which subsequently cause successional shifts in soil microbial community. To investigate the use of soil microbial community to inform criminal investigation, this study was designed to mimic clandestine graves. It compared the decomposition of stillborn piglets (Sus scrofa domesticus), as human analogues, to oak (Quercus robur) leaf litter and soil-only controls outdoors for 720 days. Environmental and edaphic parameters were monitored and showed soil microbial community alignment with temperature seasonality, which highlighted the importance of this abiotic factor. Denaturing gradient gel electrophoresis (DGGE) data were used to calculate Hill numbers and diversity indices of the bacterial 16S rRNA community did not distinguish mammalian- from plant-based decomposition consistently during the first or second year of the study. In contrast, the fungal 18S rRNA community allowed clear differentiation between different treatments (beta diversity) throughout the 720-day experiment and suggested the moment of the decomposing mammalian skin rupture. 16S rRNA-based NGS facilitated the identification of e.g., Pirellulaceae, Acidobacteria ii1-15_order and Candidatus xiphinematobacter as Year 2 bacterial markers of gravesoil at family, order and species taxonomic levels, respectively, and confirmed the similarity of the calculated Hill diversity metrics with those derived from DGGE profiling. Parallel soil elemental composition was measured by portable X-ray Fluorescence where calcium profiles for the piglet-associated soils were distinct from those without carrion. Also, soil calcium content and PMI correlated positively during the first year then negatively during the second. This study is one of the first to apply a multidisciplinary approach based on molecular and physicochemical analytical techniques to assess decomposition. It highlights the recognised potential of using soil microbial community in forensic investigations and provides a proof-of-concept for the application of a combined molecular and elemental approach to further understand the dynamics of decomposition. In addition, it sets the scene for further research in different conditions based on Hill numbers metrics instead of the classic ecological indices for soil necrobiome richness, diversity and evenness.
Collapse
|
7
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Pereira FC, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats. Pharmaceuticals (Basel) 2021; 14:ph14020097. [PMID: 33513867 PMCID: PMC7912343 DOI: 10.3390/ph14020097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between μ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson's trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Frederico C. Pereira
- Institute of Pharmacology and Experimental Therapeutics/iCBR, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal;
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| |
Collapse
|
8
|
Zissler A, Stoiber W, Steinbacher P, Geissenberger J, Monticelli FC, Pittner S. Postmortem Protein Degradation as a Tool to Estimate the PMI: A Systematic Review. Diagnostics (Basel) 2020; 10:E1014. [PMID: 33256203 PMCID: PMC7760775 DOI: 10.3390/diagnostics10121014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives: We provide a systematic review of the literature to evaluate the current research status of protein degradation-based postmortem interval (PMI) estimation. Special attention is paid to the applicability of the proposed approaches/methods in forensic routine practice. Method: A systematic review of the literature on protein degradation in tissues and organs of animals and humans was conducted. Therefore, we searched the scientific databases Pubmed and Ovid for publications until December 2019. Additional searches were performed in Google Scholar and the reference lists of eligible articles. Results: A total of 36 studies were included. This enabled us to consider the degradation pattern of over 130 proteins from 11 different tissues, studied with different methods including well-established and modern approaches. Although comparison between studies is complicated by the heterogeneity of study designs, tissue types, methods, proteins and outcome measurement, there is clear evidence for a high explanatory power of protein degradation analysis in forensic PMI analysis. Conclusions: Although only few approaches have yet exceeded a basic research level, the current research status provides strong evidence in favor of the applicability of a protein degradation-based PMI estimation method in routine forensic practice. Further targeted research effort towards specific aims (also addressing influencing factors and exclusion criteria), especially in human tissue will be required to obtain a robust, reliable laboratory protocol, and collect sufficient data to develop accurate multifactorial mathematical decomposition models.
Collapse
Affiliation(s)
- Angela Zissler
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (A.Z.); (W.S.); (P.S.); (J.G.)
| | - Walter Stoiber
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (A.Z.); (W.S.); (P.S.); (J.G.)
| | - Peter Steinbacher
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (A.Z.); (W.S.); (P.S.); (J.G.)
| | - Janine Geissenberger
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (A.Z.); (W.S.); (P.S.); (J.G.)
| | - Fabio C. Monticelli
- Department of Forensic Medicine, University of Salzburg, 5020 Salzburg, Austria;
| | - Stefan Pittner
- Department of Forensic Medicine, University of Salzburg, 5020 Salzburg, Austria;
| |
Collapse
|
9
|
In vivo toxicometabolomics reveals multi-organ and urine metabolic changes in mice upon acute exposure to human-relevant doses of 3,4-methylenedioxypyrovalerone (MDPV). Arch Toxicol 2020; 95:509-527. [PMID: 33215236 DOI: 10.1007/s00204-020-02949-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023]
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) is consumed worldwide, despite its potential to cause toxicity in several organs and even death. There is a recognized need to clarify the biological pathways through which MDPV elicits general and target-organ toxicity. In this work, a comprehensive untargeted GC-MS-based metabolomics analysis was performed, aiming to detect metabolic changes in putative target organs (brain, heart, kidneys and liver) but also in urine of mice after acute exposure to human-relevant doses of MDPV. Male CD-1 mice received binge intraperitoneal administrations of saline or MDPV (2.5 mg/kg or 5 mg/kg) every 2 h, for a total of three injections. Twenty-four hours after the first administration, target organs, urine and blood samples were collected for metabolomics, biochemical and histological analysis. Hepatic and renal tissues of MDPV-treated mice showed moderate histopathological changes but no significant differences were found in plasma and tissue biochemical markers of organ injury. In contrast, the multivariate analysis significantly discriminated the organs and urine of MDPV-treated mice from the control (except for the lowest dose in the brain), allowing the identification of a panoply of metabolites. Those levels were significantly deviated in relation to physiological conditions and showed an organ specific response towards the drug. Kidneys and liver showed the greatest metabolic changes. Metabolites related with energetic metabolism, antioxidant defenses and inflammatory response were significantly changed in the liver of MDPV-dosed animals, while the kidneys seem to have developed an adaptive response against oxidative stress caused by MDPV. On the other hand, the dysregulation of metabolites that contribute to metabolic acidosis was also observed in this organ. The heart showed an increase of fatty acid biosynthesis, possibly as an adaptation to maintain the cardiac energy homeostasis. In the brain, changes in 3-hydroxybutyric acid levels may reflect the activation of a neurotoxic pathway. However, the increase in metabolites with neuroprotective properties seems to counteract this change. Metabolic profiling of urine from MDPV-treated mice suggested that glutathione-dependent antioxidant pathways may be particularly involved in the compensatory mechanism to counteract oxidative stress induced by MDPV. Overall, this study reports, for the first time, the metabolic profile of liver, kidneys, heart, brain, and urine of MDPV-dosed mice, providing unique insights into the biological pathways of toxicity. Our findings also underline the value of toxicometabolomics as a robust and sensitive tool for detecting adaptive/toxic cellular responses upon exposure to a physiologically relevant dose of a toxic agent, earlier than conventional toxicity tests.
Collapse
|
10
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinical Doses of Tramadol and Tapentadol Causes Hepato- and Nephrotoxic Effects in Wistar Rats. Pharmaceuticals (Basel) 2020; 13:ph13070149. [PMID: 32664348 PMCID: PMC7407499 DOI: 10.3390/ph13070149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol are fully synthetic and extensively used analgesic opioids, presenting enhanced therapeutic and safety profiles as compared with their peers. However, reports of adverse reactions, intoxications and fatalities have been increasing. Information regarding the molecular, biochemical, and histological alterations underlying their toxicological potential is missing, particularly for tapentadol, owing to its more recent market authorization. Considering the paramount importance of liver and kidney for the metabolism and excretion of both opioids, these organs are especially susceptible to toxicological damage. In the present study, we aimed to characterize the putative hepatic and renal deleterious effects of repeated exposure to therapeutic doses of tramadol and tapentadol, using an in vivo animal model. Male Wistar rats were randomly divided into six experimental groups, composed of six animals each, which received daily single intraperitoneal injections of 10, 25 or 50 mg/kg tramadol or tapentadol (a low, standard analgesic dose, an intermediate dose and the maximum recommended daily dose, respectively). An additional control group was injected with normal saline. Following 14 consecutive days of administration, serum, urine and liver and kidney tissue samples were processed for biochemical, metabolic and histological analysis. Repeated administration of therapeutic doses of both opioids led to: (i) increased lipid and protein oxidation in liver and kidney, as well as to decreased total liver antioxidant capacity; (ii) decreased serum albumin, urea, butyrylcholinesterase and complement C3 and C4 levels, denoting liver synthesis impairment; (iii) elevated serum activity of liver enzymes, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyl transpeptidase, as well as lipid profile alterations, also reflecting hepatobiliary commitment; (iv) derangement of iron metabolism, as shown through increases in serum iron, ferritin, haptoglobin and heme oxygenase-1 levels. In turn, elevated serum cystatin C, decreased urine creatinine output and increased urine microalbumin levels were detected upon exposure to tapentadol only, while increased serum amylase and urine N-acetyl-β-D-glucosaminidase activities were observed for both opioids. Collectively, these results are compatible with kidney injury. Changes were also found in the expression levels of liver- and kidney-specific toxicity biomarker genes, upon exposure to tramadol and tapentadol, correlating well with alterations in lipid profile, iron metabolism and glomerular and tubular function. Histopathological analysis evidenced sinusoidal dilatation, microsteatosis, mononuclear cell infiltrates, glomerular and tubular disorganization, and increased Bowman's spaces. Although some findings are more pronounced upon tapentadol exposure, our study shows that, when compared with acute exposure, prolonged administration of both opioids smooths the differences between their toxicological effects, and that these occur at lower doses within the therapeutic range.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| |
Collapse
|
11
|
Mathematical Modelling Using Predictive Biomarkers for the Outcome of Canine Leishmaniasis upon Chemotherapy. Microorganisms 2020; 8:microorganisms8050745. [PMID: 32429309 PMCID: PMC7285289 DOI: 10.3390/microorganisms8050745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Prediction parameters of possible outcomes of canine leishmaniasis (CanL) therapy might help with therapeutic decisions and animal health care. Here, we aimed to develop a diagnostic method with predictive value by analyzing two groups of dogs with CanL, those that exhibited a decrease in parasite load upon antiparasitic treatment (group: responders) and those that maintained high parasite load despite the treatment (group: non-responders). The parameters analyzed were parasitic load determined by q-PCR, hemogram, serum biochemistry and immune system-related gene expression signature. A mathematical model was applied to the analysis of these parameters to predict how efficient their response to therapy would be. Responder dogs restored hematological and biochemical parameters to the reference values and exhibited a Th1 cell activation profile with a linear tendency to reach mild clinical alteration stages. Differently, non-responders developed a mixed Th1/Th2 response and exhibited markers of liver and kidney injury. Erythrocyte counts and serum phosphorus were identified as predictive markers of therapeutic response at an early period of assessment of CanL. The results presented in this study are highly encouraging and may represent a new paradigm for future assistance to clinicians to interfere precociously in the therapeutic approach, with a more precise definition in the patient's prognosis.
Collapse
|
12
|
Resende AD, Leal S, Batista‐Pinto C, Garcez F, Sá SI. Hepatic effects of long‐term tamoxifen administration to cycling female rats. J Biochem Mol Toxicol 2019; 33:e22293. [DOI: 10.1002/jbt.22293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Albina Dolores Resende
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS)Gandra Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR)Matosinhos Portugal
| | - Sandra Leal
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS)Gandra Portugal
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of PortoPorto Portugal
| | - Carla Batista‐Pinto
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS)Gandra Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR)Matosinhos Portugal
| | - Fernanda Garcez
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS)Gandra Portugal
| | - Susana Isabel Sá
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of PortoPorto Portugal
- Unit of Anatomy, Department of BiomedicineFaculty of Medicine of the University of PortoPorto Portugal
| |
Collapse
|
13
|
Woydt L, Bernhard M, Kirsten H, Burkhardt R, Hammer N, Gries A, Dreßler J, Ondruschka B. Intra-individual alterations of serum markers routinely used in forensic pathology depending on increasing post-mortem interval. Sci Rep 2018; 8:12811. [PMID: 30143737 PMCID: PMC6109050 DOI: 10.1038/s41598-018-31252-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023] Open
Abstract
Post-mortem biochemistry of serum markers has been the subject of numerous studies, but in-situ marker stability after death has not been sufficiently evaluated yet. Such laboratory analyses are especially necessary in the cases of functional deaths without morphological evidence of the death causes and also in cardiac death cases with only very short survival times. The aim of the study was to determine the post-mortem stability of commonly-used serum markers at predefined time points. In 20 cases, peripheral venous samples were taken starting immediately after circulatory arrest and ending 48 hours after death. Serum creatinine, urea, 3-β-hydroxybutyrate, tryptase, myoglobin, troponin T, creatin kinase and creatin kinase-MB have been included. For all markers, we observed increasing marker levels for longer post-mortem intervals. Significant marker level changes began two hours after death. Excessive increases were observed for cardiac and muscle markers. Marker levels showed high intra-assay precision. Furthermore, the markers were robust enough to withstand freeze-thaw cycles. Potential contamination of arteriovenous blood did not influence the post-mortem marker levels. Post-mortem blood should be sampled as soon as possible, as increased post-mortem intervals may heavily change marker levels in-situ in individual cases, whereas the markers are mostly unaffected by laboratory conditions.
Collapse
Affiliation(s)
- Lina Woydt
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Michael Bernhard
- Emergency Department, University Hospital of Leipzig, Leipzig, Germany.,Emergency Department, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Niels Hammer
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Orthopedic and Trauma Surgery, University Hospital of Leipzig, Leipzig, Germany.,Fraunhofer IWU, Dresden, Germany
| | - André Gries
- Emergency Department, University Hospital of Leipzig, Leipzig, Germany
| | - Jan Dreßler
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany.
| |
Collapse
|
14
|
Procopio N, Williams A, Chamberlain AT, Buckley M. Forensic proteomics for the evaluation of the post-mortem decay in bones. J Proteomics 2018; 177:21-30. [PMID: 29407476 DOI: 10.1016/j.jprot.2018.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Current methods for evaluation the of post-mortem interval (PMI) of skeletal remains suffer from poor accuracy due to the great number of variables that affect the diagenetic process and to the lack of specific guidelines to address this issue. During decomposition, proteins can undergo cumulative decay over the time, resulting in a decrease in the range and abundance of proteins present (i.e., the proteome) in different tissues as well as in an increase of post-translational modifications occurring in these proteins. In this study, we investigate the applicability of bone proteomic analyses to simulated forensic contexts, looking for specific biomarkers that may help the estimation of PMI, as well as evaluate a previously discovered marker for the estimation of biological age. We noticed a reduction of particular plasma and muscle proteins with increasing PMIs, as well as an increased deamidation of biglycan, a protein with a role in modulating bone growth and mineralization. We also corroborated our previous results regarding the use of fetuin-A as a potential biomarker for the estimation of age-at-death, demonstrating the applicability and the great potential that proteomics may have towards forensic sciences. SIGNIFICANCE The estimation of the post-mortem interval has a key role in forensic investigations, however nowadays it still suffers from poor reliability, especially when body tissues are heavily decomposed. Here we propose for the first time the application of bone proteomics to the estimation of the time elapsed since death and found several new potential biomarkers to address this, demonstrating the applicability of proteomic analyses to forensic sciences.
Collapse
Affiliation(s)
- Noemi Procopio
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Anna Williams
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Andrew T Chamberlain
- School of Earth and Environmental Sciences, The University of Manchester, Stopford Building, 99 Oxford Road, Manchester, M13 9PG, UK
| | - Michael Buckley
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
15
|
Zhang J, Li B, Wang Q, Wei X, Feng W, Chen Y, Huang P, Wang Z. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids. Sci Rep 2017; 7:18013. [PMID: 29269843 PMCID: PMC5740144 DOI: 10.1038/s41598-017-18228-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022] Open
Abstract
Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO-, C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.
Collapse
Affiliation(s)
- Ji Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
- Department of Forensic Pathology, Xian Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bing Li
- Qingpu Branch of Shanghai Municipal Bureau of Public Security, Shanghai, 201799, China
| | - Qi Wang
- Department of Forensic Pathology, Xian Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Wei
- Department of Forensic Pathology, Xian Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Weibo Feng
- Cadet Brigade, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yijiu Chen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China.
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China.
| | - Zhenyuan Wang
- Department of Forensic Pathology, Xian Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
16
|
Wang Q, He H, Li B, Lin H, Zhang Y, Zhang J, Wang Z. UV-Vis and ATR-FTIR spectroscopic investigations of postmortem interval based on the changes in rabbit plasma. PLoS One 2017; 12:e0182161. [PMID: 28753641 PMCID: PMC5533326 DOI: 10.1371/journal.pone.0182161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022] Open
Abstract
Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet-visible (UV-Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to confirm the variations caused by this phenomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-PLS model was better than that of full-spectrum PLS model based on its root mean square error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h (R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed elements also supported the role of redistribution of components in spectral changes in postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled with the advanced mathematical methods could serve as a convenient and reliable tool to study the redistribution of postmortem components and estimate the PMI.
Collapse
Affiliation(s)
- Qi Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haijun He
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bing Li
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hancheng Lin
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yinming Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ji Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
17
|
Barbosa J, Faria J, Leal S, Afonso LP, Lobo J, Queirós O, Moreira R, Carvalho F, Dinis-Oliveira RJ. Acute administration of tramadol and tapentadol at effective analgesic and maximum tolerated doses causes hepato- and nephrotoxic effects in Wistar rats. Toxicology 2017; 389:118-129. [PMID: 28689766 DOI: 10.1016/j.tox.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 07/04/2017] [Indexed: 01/12/2023]
Abstract
Tramadol and tapentadol are two atypical synthetic opioid analgesics, with monoamine reuptake inhibition properties. Mainly aimed at the treatment of moderate to severe pain, these drugs are extensively prescribed for multiple clinical applications. Along with the increase in their use, there has been an increment in their abuse, and consequently in the reported number of adverse reactions and intoxications. However, little is known about their mechanisms of toxicity. In this study, we have analyzed the in vivo toxicological effects in liver and kidney resulting from an acute exposure of a rodent animal model to both opioids. Male Wistar rats were intraperitoneally administered with 10, 25 and 50mg/kg tramadol and tapentadol, corresponding to a low, effective analgesic dose, an intermediate dose and the maximum recommended daily dose, respectively, for 24h. Toxicological effects were assessed in terms of oxidative stress, biochemical and metabolic parameters and histopathology, using serum and urine samples, liver and kidney homogenates and tissue specimens. The acute exposure to tapentadol caused a dose-dependent increase in protein oxidation in liver and kidney. Additionally, exposure to both opioids led to hepatic commitment, as shown by increased serum lipid levels, decreased urea concentration, increased alanine aminotransferase and decreased butyrylcholinesterase activities. It also led to renal impairment, as reflected by proteinuria and decreased glomerular filtration rate. Histopathological findings included sinusoidal dilatation, microsteatosis, vacuolization, cell infiltrates and cell degeneration, indicating metabolic changes, inflammation and cell damage. In conclusion, a single effective analgesic dose or the maximum recommended daily dose of both opioids leads to hepatotoxicity and nephrotoxicity, with tapentadol inducing comparatively more toxicity. Whether these effects reflect risks during the therapeutic use or human overdoses requires focused attention by the medical community.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Juliana Faria
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sandra Leal
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - João Lobo
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Odília Queirós
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA - Center for Molecular Biology and Environment, Department of Biology, University of Minho, Braga, Portugal
| | - Roxana Moreira
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA - Center for Molecular Biology and Environment, Department of Biology, University of Minho, Braga, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
18
|
Effective analgesic doses of tramadol or tapentadol induce brain, lung and heart toxicity in Wistar rats. Toxicology 2017; 385:38-47. [PMID: 28499616 DOI: 10.1016/j.tox.2017.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/30/2017] [Accepted: 05/07/2017] [Indexed: 12/26/2022]
|
19
|
Alves EA, Brandão P, Neves JF, Cravo SM, Soares JX, Grund JPC, Duarte JA, Afonso CMM, Pereira Netto AD, Carvalho F, Dinis-Oliveira RJ. Repeated subcutaneous administrations of krokodil causes skin necrosis and internal organs toxicity in Wistar rats: putative human implications. Hum Psychopharmacol 2017; 32. [PMID: 28657190 DOI: 10.1002/hup.2572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/11/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE "Krokodil" is the street name for an impure homemade drug mixture used as a cheap substitute for heroin, containing desomorphine as the main opioid. Abscesses, gangrene, thrombophlebitis, limb ulceration and amputations, jaw osteonecrosis, skin discoloration, ulcers, skin infections, and bleeding are some of the typical reported signs in humans. This study aimed to understand the toxicity of krokodil using Wistar male rats as experimental model. METHODS Animals were divided into seven groups and exposed subcutaneously to NaCl 0.9% (control), krokodil mixture free of psychotropic substances (blank krokodil), pharmaceutical grade desomorphine 1 mg/kg, and four different concentrations of krokodil (containing 0.125, 0.25, 0.5, and 1 mg/kg of desomorphine) synthesized accordingly to a "domestic" protocol followed by people who inject krokodil (PWIK). Daily injections for five consecutive days were performed, and animals were sacrificed 24 hr after the last administration. Biochemical and histological analysis were carried out. RESULTS It was shown that the continuous use of krokodil may cause injury at the injection area, with formation of necrotic zones. The biochemical results evidenced alterations on cardiac and renal biomarkers of toxicity, namely, creatine kinase, creatine kinase-MB, and uric acid. Significant alteration in levels of reduced and oxidized glutathione on kidney and heart suggested that oxidative stress may be involved in krokodil-mediated toxicity. Cardiac congestion was the most relevant finding of continuous krokodil administration. CONCLUSIONS These findings contribute notably to comprehension of the local and systemic toxicological impact of this complex drug mixture on major organs and will hopefully be useful for the development of appropriate treatment strategies towards the human toxicological effects of krokodil.
Collapse
Affiliation(s)
- Emanuele Amorim Alves
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.,Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.,EPSJV-Joaquim Venâncio Polytechnic School of Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pedro Brandão
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Filipe Neves
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sara Manuela Cravo
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Xavier Soares
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jean-Paul C Grund
- CVO-Addiction Research Centre, Utrecht, The Netherlands.,Department of Addictology, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic.,Freudenthal Institute for Science and Mathematics Education, Utrecht University, Utrecht, The Netherlands
| | | | - Carlos M M Afonso
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Porto, Portugal
| | | | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.,Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Faria J, Barbosa J, Queirós O, Moreira R, Carvalho F, Dinis-Oliveira RJ. Comparative study of the neurotoxicological effects of tramadol and tapentadol in SH-SY5Y cells. Toxicology 2016; 359-360:1-10. [PMID: 27317026 DOI: 10.1016/j.tox.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Opioid therapy and abuse are increasing, justifying the need to study their toxicity and underlying mechanisms. Given opioid pharmacodynamics at the central nervous system, the analysis of toxic effects in neuronal models gains particular relevance. The aim of this study was to compare the toxicological effects of acute exposure to tramadol and tapentadol in the undifferentiated human SH-SY5Y neuroblastoma cell line. Upon exposure to tramadol and tapentadol concentrations up to 600μM, cell toxicity was assessed through evaluation of oxidative stress, mitochondrial and metabolic alterations, as well as cell viability and death mechanisms through necrosis or apoptosis, and related signalling. Tapentadol was observed to trigger much more prominent toxic effects than tramadol, ultimately leading to energy deficit and cell death. Cell death was shown to predominantly occur through necrosis, with no alterations in membrane potential or in cytochrome c release. Both drugs were shown to stimulate glucose uptake and to cause ATP depletion, due to changes in the expression of energy metabolism enzymes. The toxicity mechanisms in such a neuronal model are relevant to understand adverse reactions to these opioids and to contribute to dose adjustment in order to avoid neurological damage.
Collapse
Affiliation(s)
- Juliana Faria
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Joana Barbosa
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Odília Queirós
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA-Center for Molecular Biology and Environment, Department of Biology, University of Minho, Braga, Portugal
| | - Roxana Moreira
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA-Center for Molecular Biology and Environment, Department of Biology, University of Minho, Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
21
|
Dinis-Oliveira RJ, Carvalho F, Costa I, Silvestre R, Magalhães T. Response to the comment on "Promising blood-derived biomarkers for estimation of the postmortem interval". Toxicol Res (Camb) 2016; 5:716-718. [PMID: 30102750 PMCID: PMC6060668 DOI: 10.1039/c5tx00461f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/20/2016] [Indexed: 11/21/2022] Open
Abstract
Following Meurs and Szykuła's comment on our published article titled "Promising blood-derived biomarkers for estimation of the postmortem interval", we recognize the importance of the issues raised, but we would like to emphasize that these contain some misinterpretations and that most of the points were already discussed in depth in our manuscript particularly in the conclusion section. We also aim to highlight further data regarding the difficulties of postmortem interval estimation.
Collapse
Affiliation(s)
- Ricardo Jorge Dinis-Oliveira
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies , Department of Sciences , University Institute of Health Sciences (IUCS-CESPU) , Gandra , Portugal
- UCIBIO-REQUIMTE , Laboratory of Toxicology , Department of Biological Sciences , Faculty of Pharmacy , University of Porto , Porto , Portugal
- Department of Legal Medicine and Forensic Sciences , Faculty of Medicine , University of Porto , Porto , Portugal . ; Tel: +351 225513600
| | - Félix Carvalho
- UCIBIO-REQUIMTE , Laboratory of Toxicology , Department of Biological Sciences , Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Isabel Costa
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies , Department of Sciences , University Institute of Health Sciences (IUCS-CESPU) , Gandra , Portugal
- Department of Legal Medicine and Forensic Sciences , Faculty of Medicine , University of Porto , Porto , Portugal . ; Tel: +351 225513600
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS) , School of Health Sciences , University of Minho , Braga , Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Teresa Magalhães
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies , Department of Sciences , University Institute of Health Sciences (IUCS-CESPU) , Gandra , Portugal
- Department of Legal Medicine and Forensic Sciences , Faculty of Medicine , University of Porto , Porto , Portugal . ; Tel: +351 225513600
| |
Collapse
|
22
|
Meurs J, Szykuła KM. Comment on "Promising blood-derived biomarkers for estimation of the postmortem interval" by I. Costa, F. Carvalho, T. Magalhães, P. G. de Pinho, R. Silvestre & R. J. Dinis-Oliveira. ( Toxicol. Res., 2015, 4, 1443-1452). Toxicol Res (Camb) 2016; 5:714-715. [PMID: 30102300 PMCID: PMC6062304 DOI: 10.1039/c5tx00397k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022] Open
Abstract
Recently, Costa et al. published an article about promising biomarkers for estimating the postmortem interval. Instead of postmortem blood, antemortem blood was putrefied in vitro by exposing the blood to a temperature gradient. However, in this way several other influencing factors were excluded, hence, the accuracy of the proposed model is doubtful. Therefore, the aim of this comment is to discuss the methodology, results and shortcomings of the study of Costa et al.
Collapse
Affiliation(s)
- Joris Meurs
- VU University Amsterdam , Faculty of Sciences , Amsterdam , The Netherlands .
| | | |
Collapse
|