1
|
Wu L, Liu X, Yu X, Xu S, Zhang S, Guo S. Fabrication of Boron-Doped Diamond Film Electrode for Detecting Trace Lead Content in Drinking Water. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6013. [PMID: 36079392 PMCID: PMC9456600 DOI: 10.3390/ma15176013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This work aimed to fabricate a boron-doped diamond film electrode for detecting trace amounts of lead in drinking water so as to safeguard it for the public. Available detectors suffer from high costs and complex analytical processes, and commonly used electrodes for electrochemical detectors are subject to a short life, poor stability, and secondary pollution during usage. In this work, a boron-doped diamond (BDD) electrode was prepared on a porous titanium substrate, and the microstructure and electrochemical properties of the BDD electrode were systematically studied. Moreover, the stripping parameters were optimized to obtain a better signal response and determine the detection index. As a result, diamond particles were closely arranged on the surface of the BDD electrode with good phase quality. The electrode showed high electrochemical activity, specific surface area, and low charge transfer resistance, which can accelerate the stripping reaction process of Pb2+. The BDD electrode presented a low detection limit of 2.62 ppb for Pb2+ under an optimized parameter set with an enrichment time of 150 s and a scanning frequency of 50 Hz. The BDD electrode also has good anti-interference ability. The designed BDD electrode is expected to offer a reliable solution for the dilemma of the availability of metal electrodes and exhibits a good application prospect in the trace monitoring of Pb2+ content in drinking water.
Collapse
|
2
|
Su K, Huang X, Wei W, Zeng X, Xiang S, Yang H. A ready-to-use fluorescence probe of Pd 2+ in water: novel tricyclic heterocyclic base on 1,3,4-oxadiazole. LUMINESCENCE 2021; 36:1690-1696. [PMID: 34173312 DOI: 10.1002/bio.4110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 12/19/2022]
Abstract
A ready-to-use hetero-tricyclic compound, 5,5'-(furan-2,5-diyl) bis (1,3,4- oxadiazol-2-amine) (5), was synthesized with a good yield; it has an suitable fluorescence characteristic and research founded that it can respond to trace Pd2+ in water at a normal pH range. A fluorescence titration revealed the detection limit for Pd2+ was as low as 3.97 × 10-9 M. Density-functional theory calculation using Guassian09 implied that the breakage of conjugation and coplanarity of compound 5 led to fluorescence quenching. Compound 5 could be applied as a chemical probe to detect trace amounts of Pd2+ with good accuracy, fast response time, excellent selectivity, and high sensitivity. FT-IR, NMR, and MS were used to characterize the chemical structure of compound 5.
Collapse
Affiliation(s)
- Ke Su
- Department of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, Sichuan, China.,Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province, Dazhou, Sichuan, China
| | - Xiaomei Huang
- Department of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, Sichuan, China
| | - Wei Wei
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province, Dazhou, Sichuan, China
| | - Xiaotong Zeng
- Department of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, Sichuan, China
| | - Siyu Xiang
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Haijun Yang
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
3
|
Xu D, Li M, Xu H, Yu J, Wang Y, Zhang P. N,S-doped carbon quantum dots as a fluorescent probe for palladium(II) ions via Förster resonance energy transfer. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
4
|
Nazari B, Mousavi S, Keshavarz MH, Bordbar A. Fabrication of High‐Performance Palladium Supported on Activated Charcoal Nanocatalyst for Synthesis of Morphine Opioid Analgesics. ChemistrySelect 2020. [DOI: 10.1002/slct.202000337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Behzad Nazari
- Department of ChemistryMalek-ashtar University of Technology Shahin shahr 83145/115 Iran
| | - Sajjad Mousavi
- Department of ChemistryMalek-ashtar University of Technology Shahin shahr 83145/115 Iran
| | - Mohammad H. Keshavarz
- Department of ChemistryMalek-ashtar University of Technology Shahin shahr 83145/115 Iran
| | | |
Collapse
|
5
|
Zou L, Bennett R, Haidar Ahmad IA, Jocher BM, Zhang L, Bu X, Mangion I, Regalado EL. Generic Ion Chromatography–Conductivity Detection Method for Analysis of Palladium Scavengers in New Drug Substances. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Lanfang Zou
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Raffeal Bennett
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Imad A. Haidar Ahmad
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Brandon M. Jocher
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Li Zhang
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Xiaodong Bu
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erik L. Regalado
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
6
|
Borrill AJ, Reily NE, Macpherson JV. Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst 2019; 144:6834-6849. [DOI: 10.1039/c9an01437c] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We highlight the fundamentals and challenges involved with anodic stripping voltammetry (ASV) using solid electrodes providing a practical guide to anyone wishing to undertake analytical ASV.
Collapse
Affiliation(s)
- Alexandra J. Borrill
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Diamond Science and Technology Centre for Doctoral Training
| | - Nicole E. Reily
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Natural Environment Research Council
| | | |
Collapse
|
7
|
Chen SH, Li YX, Li PH, Xiao XY, Jiang M, Li SS, Zhou WY, Yang M, Huang XJ, Liu WQ. Electrochemical spectral methods for trace detection of heavy metals: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Xu L, Hu R, Tang BZ. Room Temperature Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and Iminophosphorane toward Heteroatom-Rich Multifunctional Poly(phosphorus amidine)s. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01096] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Liguo Xu
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
9
|
Goggins S, Stark OP, Naz C, Marsh BJ, Frost CG. Ratiometric electrochemical detection of Pd•••π interactions: application towards electrochemical molecular logic gates. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1288910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sean Goggins
- Department of Chemistry, University of Bath, Bath, UK
| | | | | | | | | |
Collapse
|