1
|
Chen J, Huang H, Ouyang D, Lin J, Chen Z, Cai Z, Lin Z. A reactive matrix for in situ chemical derivatisation and specific detection of cis-diol compounds by matrix-assisted laser desorption/ionisation mass spectrometry. Analyst 2023; 148:5402-5406. [PMID: 37755117 DOI: 10.1039/d3an01400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Analysis of cis-diol compounds is essential, because they play important roles in cosmetics, food, pharmaceuticals, and living organisms. Herein, we describe the development of a matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) method to analyse cis-diol compounds. In this method, a 6-borono-1-methylquinoline-1-ium (BMQI) reactive matrix was designed for in situ derivatisation of cis-diol compounds based on the boronate affinity interaction between boronic acid and cis-diol groups. Compared to traditional commercial matrices and other boronic acid reagents, BMQI can significantly accelerate the desorption/ionisation process, improve reproducibility, exhibit free background interference, and enhance signal intensity in the analysis of various cis-diol compounds even for amounts as low as 1 nmol. The BMQI-assisted laser desorption/ionisation mass spectrometry (LDI-MS) was successfully applied to the rapid screening and identification of sugar alcohols in different sugar-free foods. This work provides an alternative method to the LDI-MS analysis of cis-diol-containing molecules, and the method can be extended to other food samples and biofluids.
Collapse
Affiliation(s)
- Jiajing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jiali Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zhuling Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, PR China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
2
|
Porro B, Eligini S, Conte E, Cosentino N, Capra N, Cavalca V, Banfi C. An Optimized MRM-Based Workflow of the l-Arginine/Nitric Oxide Pathway Metabolites Revealed Disease- and Sex-Related Differences in the Cardiovascular Field. Int J Mol Sci 2022; 23:ijms23031136. [PMID: 35163055 PMCID: PMC8835333 DOI: 10.3390/ijms23031136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical data indicate that low circulating l-homoarginine (HArg) concentrations are associated with cardiovascular (CV) disease, CV mortality, and all-cause mortality. A high number of LC-based analytical methods for the quantification of HArg, in combination with the l-arginine (Arg)-related pathway metabolites, have been reported. However, these methods usually consider a limited panel of analytes. Thus, in order to achieve a comprehensive picture of the Arg metabolism, we described an improved targeted metabolomic approach based on a multiple reaction monitoring (MRM) mass spectrometry method for the simultaneous quantification of the Arg/nitric oxide (NO) pathway metabolites. This methodology was then employed to quantify the plasma concentrations of these analytes in a cohort of individuals with different grades/types of coronary artery disease (CAD) in order to increase knowledge about the role of HArg and its associated metabolites in the CV field. Our results showed that the MRM method here implemented is suitable for the simultaneous assessment of a wide panel of amino acids involved in the Arg/NO metabolic pathway in plasma samples from patients with CV disease. Further, our findings highlighted an impairment of the Arg/NO metabolic pathway, and suggest a sex-dependent regulation of this metabolic route.
Collapse
|
3
|
Qin ZN, Ding J, Yu QW, Zhou P, Feng YQ. A boronic acid-modified C 60 derivatization reagent for the rapid detection of 3-monochloropropane-1,2-diol using matrix-assisted laser desorption/ionization-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9169. [PMID: 34293234 DOI: 10.1002/rcm.9169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE 3-Monochloropropane-1,2-diol (3-MCPD) is a well-known contaminant formed in food thermal processing, which could be found in a variety of foodstuffs. Due to its potential carcinogenicity, it was essential to quickly develop a rapid and high-throughput analytical method to monitor 3-MCPD in foodstuffs, which is described in this study. METHODS 3-MCPD was extracted from foodstuffs and then was derivatized with a boronic acid-modified C60 (B-C60 ) through the boronic acid-diol reaction. Microwave heating was used to accelerate the derivatization reaction. Mass spectrometry (MS) analysis was conducted using matrix-assisted laser desorption/ionization-MS (MALDI-MS). The application of the method was validated using various smoked food samples. RESULTS The chemical derivatization of 3-MCPD with B-C60 enabled the addition of a C60 -tag to 3-MCPD. High-throughput analysis of the sample within 0.5 h was realized. A good linear range from 0.02 to 1.5 μg mL-1 for 3-MCPD was obtained, with a detection limit of 0.005 μg mL-1 . The recoveries in spiked foodstuffs ranged from 85.4% to 115.1% with relative standard deviations of 2.0%-14.2%. This method was successfully applied to detect 3-MCPD in smoked foodstuffs. CONCLUSIONS A quantitative method was developed for the detection of 3-MCPD in foodstuffs using B-C60 derivatization combined with MALDI-MS strategy. This proposed method may serve as a potential platform for the rapid and high-throughput analysis of 3-MCPD in foodstuffs for the purpose of food safety control.
Collapse
Affiliation(s)
- Zhang-Na Qin
- Department of Chemistry, Wuhan University, Wuhan, China
| | - Jun Ding
- Department of Chemistry, Wuhan University, Wuhan, China
| | - Qiong-Wei Yu
- Department of Chemistry, Wuhan University, Wuhan, China
| | - Ping Zhou
- Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Targeting out of range biomolecules: Chemical labeling strategies for qualitative and quantitative MALDI MS-based detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Chemical labeling – Assisted mass spectrometry analysis for sensitive detection of cytidine dual modifications in RNA of mammals. Anal Chim Acta 2020; 1098:56-65. [DOI: 10.1016/j.aca.2019.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/13/2019] [Accepted: 11/10/2019] [Indexed: 12/15/2022]
|
6
|
Lin Z, Cai Z. Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices. MASS SPECTROMETRY REVIEWS 2018; 37:681-696. [PMID: 29509966 DOI: 10.1002/mas.21558] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 06/08/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an excellent analytical technique for rapid and sensitive analysis of macromolecules such as polymers and proteins. However, the main drawback of MALDI-TOF MS is its difficulty to detect small molecules with mass below 700 Da because of the intensive interference from MALDI matrix in the low mass region. In recent years there has been considerable interest in developing matrix-free laser desorption/ionization by using nanostructured substrates to substitute the conventional organic matrices, which is often referred as surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). Despite these attractive features, most of the current SALDI-TOF MS for the analysis of small molecules employ positive ion mode, which is subjected to produce multiple alkali metal adducts, and thus increases the complexity of the analysis. Different from the complicated adducts produced in positive ion mode, mass spectra obtained in negative ion mode are featured by deprotonated ion peaks without matrix interference, which simplifies the interpretation of mass spectra and detection of unknown. In this review, we critically survey recent advances in nanostructured substrates for negative ion LDI-TOF MS analysis of small molecules in the last 5 years. Special emphasis is placed on the preparation of the nanostructured substrates and the results achieved in negative ion SALDI-MS. In addition, a variety of promising applications including environmental, biological, and clinical analysis are introduced. The ionization mechanism of negative ionization is briefly discussed.
Collapse
Affiliation(s)
- Zian Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian, P.R. China
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, P.R. China
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, P.R. China
| |
Collapse
|
7
|
Ding J, Xiao HM, Liu S, Wang C, Liu X, Feng YQ. A matrix-assisted laser desorption/ionization mass spectroscopy method for the analysis of small molecules by integrating chemical labeling with the supramolecular chemistry of cucurbituril. Anal Chim Acta 2018; 1026:77-86. [PMID: 29852996 DOI: 10.1016/j.aca.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 01/05/2023]
Abstract
Although several methods have realized the analysis of low molecular weight (LMW) compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by overcoming the problem of interference with MS signals in the low mass region derived from conventional organic matrices, this emerging field still requires strategies to address the issue of analyzing complex samples containing LMW components in addition to the LMW compounds of interest, and solve the problem of lack of universality. The present study proposes an integrated strategy that combines chemical labeling with the supramolecular chemistry of cucurbit [n]uril (CB [n]) for the MALDI MS analysis of LMW compounds in complex samples. In this strategy, the target LMW compounds are first labeled by introducing a series of bifunctional reagents that selectively react with the target analytes and also form stable inclusion complexes with CB [n]. Then, the labeled products act as guest molecules that readily and selectively form stable inclusion complexes with CB [n]. This strategy relocates the MS signals of the LMW compounds of interest from the low mass region suffering high interference to the high mass region where interference with low mass components is absent. Experimental results demonstrate that a wide range of LMW compounds, including carboxylic acids, aldehydes, amines, thiol, and cis-diols, can be successfully detected using the proposed strategy, and the limits of detection were in the range of 0.01-1.76 nmol/mL. In addition, the high selectivity of the labeling reagents for the target analytes in conjunction with the high selectivity of the binding between the labeled products and CB [n] ensures an absence of signal interference with the non-targeted LMW components of complex samples. Finally, the feasibility of the proposed strategy for complex sample analysis is demonstrated by the accurate and rapid quantitative analysis of aldehydes in saliva and herbal medicines. As such, this work not only provides an alternative method for the detection of various LMW compounds using MALDI MS, but also can be applied to the selective and high-throughput analysis of LMW analytes in complex samples.
Collapse
Affiliation(s)
- Jun Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Chang Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Matrix-assisted laser desorption/ionization mass spectrometry for the analysis of polyamines in plant micro-tissues using cucurbituril as a host molecule. Anal Chim Acta 2017; 987:56-63. [PMID: 28916040 DOI: 10.1016/j.aca.2017.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 01/05/2023]
Abstract
In this study, a matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) strategy using cucurbit[n]uril (CB[n]) as a host molecule is proposed for the analysis of low molecular weight (LMW) compounds in complex samples. As a proof-of-concept, CB[6] was selected as the host molecule, and endogenous polyamines in plant tissue were chosen as the target analytes. Due to the molecular recognition and mass shifting properties of CB[6], the ionic signals associated with polyamines were moved to the higher mass region (>1000 Da) after specifically binding to CB[6], while signal interference derived from the conventional organic matrix and the complex sample matrix remained in the low mass region because of the incompatibility of their molecular size with CB[6] cavities. The strategy not only facilitated the analysis of LMW compounds in complex samples by MALDI MS, but also offered high throughput by accomplishing the entire analytical procedure within 10 min. The detection of polyamine concentration showed good linearity in the range of 0.02-10.0 ng/μL with correlation coefficients (R) greater than 0.9915. The limits of detection were 8.8-28.8 pg. The good reproducibility and reliability of the method were demonstrated by excellent intraday and interday precisions with relative standard deviations less than 7.9%, and the recovery ranged from 92.1% to 117.1%. Finally, the good sensitivity of the method allowed for the quantitative analysis of endogenous polyamine concentrations in various micro-tissues of Arabidopsis thaliana (20.0-740.0 μg fresh weight for each sample).
Collapse
|
9
|
Wu P, Xiao HM, Ding J, Deng QY, Zheng F, Feng YQ. Development of C60-based labeling reagents for the determination of low-molecular-weight compounds by matrix assisted laser desorption ionization mass (I): Determination of amino acids in microliter biofluids. Anal Chim Acta 2017; 960:90-100. [DOI: 10.1016/j.aca.2017.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|