1
|
Owen C, Fader KA, Hassanein M. Western blotting: evolution of an old analytical method to a new quantitative tool for biomarker measurements. Bioanalysis 2024; 16:319-328. [PMID: 38348662 DOI: 10.4155/bio-2023-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Western blotting (WB) is a widely used laboratory technique for detecting specific proteins in biological matrices. Recent advances in antibody production, automation, gel and membrane manufacturing and highly sensitive detection platforms have transformed WB from a labor-intensive and qualitative method into a highly reproducible and quantitative assay suitable for biomarker detection. Despite these significant improvements in the capabilities and efficiency of WB, there remain challenges that hinder its widespread application as a research, diagnostic (in two-tiered assays like Lyme disease testing) and drug development tool. This article describes recent innovations introduced to WB methodology and the remaining challenges that prevent its wider adoption for biomarker measurements throughout the drug development process.
Collapse
Affiliation(s)
- Carolina Owen
- Early Clinical Development, Precision Medicine, Pfizer Inc., 445 Eastern Point Rd, Groton, CT 06340, USA
| | - Kelly A Fader
- Early Clinical Development, Precision Medicine, Pfizer Inc., 445 Eastern Point Rd, Groton, CT 06340, USA
| | - Mohamed Hassanein
- Early Clinical Development, Precision Medicine, Pfizer Inc., 1 Portland St, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Desire CT, Arrua RD, Strudwick XL, Kopecki Z, Cowin AJ, Hilder EF. The development of microfluidic-based western blotting: Technical advances and future perspectives. J Chromatogr A 2023; 1691:463813. [PMID: 36709548 DOI: 10.1016/j.chroma.2023.463813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Over the past two decades significant technical advancement in the field of western blotting has been made possible through the utilization of microfluidic technologies. In this review we provide a critical overview of these advancements, highlighting the advantages and disadvantages of each approach. Particular attention is paid to the development of now commercially available systems, including those for single cell analysis. This review also discusses more recent developments, including algorithms for automation and/or improved quantitation, the utilization of different materials/chemistries, use of projection electrophoresis, and the development of triBlots. Finally, the review includes commentary on future advances in the field based on current developments, and the potential of these systems for use as point-of-care devices in healthcare.
Collapse
Affiliation(s)
- Christopher T Desire
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
3
|
Zadeh C, Huggins JR, Sarmah D, Westbury BC, Interiano WR, Jordan MC, Phillips SA, Dodd WB, Meredith WO, Harold NJ, Erdem C, Birtwistle MR. Mesowestern Blot: Simultaneous Analysis of Hundreds of Submicroliter Lysates. ACS OMEGA 2022; 7:28912-28923. [PMID: 36033686 PMCID: PMC9404195 DOI: 10.1021/acsomega.2c02201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Western blotting is a widely used technique for molecular-weight-resolved analysis of proteins and their posttranslational modifications, but high-throughput implementations of the standard slab gel arrangement are scarce. The previously developed Microwestern requires a piezoelectric pipetting instrument, which is not available for many labs. Here, we report the Mesowestern blot, which uses a 3D-printable gel casting mold to enable high-throughput Western blotting without piezoelectric pipetting and is compatible with the standard sample preparation and small (∼1 μL) sample sizes. The main tradeoffs are reduced molecular weight resolution and higher sample-to-sample CV, making it suitable for qualitative screening applications. The casted polyacrylamide gel contains 336, ∼0.5 μL micropipette-loadable sample wells arranged within a standard microplate footprint. Polyacrylamide % can be altered to change molecular weight resolution profiles. Proof-of-concept experiments using both infrared-fluorescent molecular weight protein ladder and cell lysate (RIPA buffer) demonstrate that the protein loaded in Mesowestern gels is amenable to the standard Western blotting steps. The main difference between Mesowestern and traditional Western is that semidry horizontal instead of immersed vertical gel electrophoresis is used. The linear range of detection is at least 32-fold, and at least ∼500 attomols of β-actin can be detected (∼29 ng of total protein from mammalian cell lysates: ∼100-300 cells). Because the gel mold is 3D-printable, users with access to additive manufacturing cores have significant design freedom for custom layouts. We expect that the technique could be easily adopted by any typical cell and molecular biology laboratory already performing Western blots.
Collapse
Affiliation(s)
- Cameron
O. Zadeh
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jonah R. Huggins
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Deepraj Sarmah
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Baylee C. Westbury
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - William R. Interiano
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Micah C. Jordan
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - S. Ashley Phillips
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - William B. Dodd
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Wesley O. Meredith
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Nicholas J. Harold
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Cemal Erdem
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Marc R. Birtwistle
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department
of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
4
|
Hennig S, Shu Z, Gutzweiler L, Koltay P, von Stetten F, Zengerle R, Früh SM. Paper-based open microfluidic platform for protein electrophoresis and immunoprobing. Electrophoresis 2021; 43:621-631. [PMID: 34902175 DOI: 10.1002/elps.202100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022]
Abstract
Protein electrophoresis and immunoblotting are indispensable analytical tools for the characterization of proteins and posttranslational modifications in complex sample matrices. Owing to the lack of automation, commonly employed slab-gel systems suffer from high time demand, significant sample/antibody consumption, and limited reproducibility. To overcome these limitations, we developed a paper-based open microfluidic platform for electrophoretic protein separation and subsequent transfer to protein-binding membranes for immunoprobing. Electrophoresis microstructures were digitally printed into cellulose acetate membranes that provide mechanical stability while maintaining full accessibility of the microstructures for consecutive immunological analysis. As a proof-of-concept, we demonstrate separation of fluorescently labeled marker proteins in a wide molecular weight range (15-120 kDa) within only 15 min, reducing the time demand for the entire workflow (from sample preparation to immunoassay) to approximately one hour. Sample consumption was reduced 10- to 150-fold compared to slab-gel systems, owing to system miniaturization. Moreover, we successfully applied the paper-based approach to complex samples such as crude bacterial cell extracts. We envisage that this platform will find its use in protein analysis workflows for scarce and precious samples, providing a unique opportunity to extract profound immunological information from limited sample amounts in a fast fashion with minimal hands-on time.
Collapse
Affiliation(s)
| | - Zhe Shu
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | | | - Peter Koltay
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Susanna M Früh
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
CHEN W, GAN Z, QIN J. [Microfluidic strategies for separation and analysis of circulating exosomes]. Se Pu 2021; 39:968-980. [PMID: 34486836 PMCID: PMC9404160 DOI: 10.3724/sp.j.1123.2021.07005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
Exosomes are membrane-bound nanovesicles that are secreted by most types of cells and contain a range of biologically important molecules, including lipids, proteins, ribonucleic acids, etc. Emerging evidences show that exosomes can affect cells' physiological status by transmitting molecular messages among cells. As such, exosomes are involved in various pathological processes. Studying exosomes is of great importance for understanding their biological functions and relevance to disease diagnosis. However, it is difficult to separate and analyze exosomes due to their small size, and because their density is similar to that of bodily fluids. Traditional methods, including ultracentrifugation and ultrafiltration are time-consuming and require expensive equipment. Other methods for exosome separation, including immunoaffinity-based methods, are expensive and rely heavily on specific antibodies. Precipitation-based methods do not yield acceptable purity for downstream analysis, due to polymer contamination. Thus, urgent demand exists for a portable, simple, affordable method for exosome separation. Microfluidic chip technology offers a potential platform for separation and detection of exosomes, with several remarkable characteristics, including low sample consumption, high throughput, and easy integration. This paper provides an overview of current microfluidic strategies for separation and analysis of circulating exosomes. In our introduction to exosome separation, we divide existing separation methods into two categories. Category one is based on exosome physical properties, and includes membrane filtration, nano-column array sorting, and physical isolation. The other is immune capture, which is based on biochemical characteristics of exosomes, and includes fixed base immune capture and unfixed base immune capture. In our introduction to exosome analyses, some commonly used methods, including western blotting, scanning electron microscopy, and flow cytometry are briefly described. Some new systems, which combine microfluidic technology with fluorescence, electrochemical sensing, surface plasmon resonance, or other multimodal analysis methods for integrated detection of exosomes are then described in detail. Finally, the challenges faced by microfluidic technology in improving exosome purity and making systems more portable are analyzed. Prospects for application of microfluidic chips in this area are also discussed. With the rapid development of micro/nano-manufacturing, new materials, and information technology, microfluidic exosome separation and analysis systems will become smaller, more integrated, and more automated. Microfluidic chip technology will play important roles in exosome separation, biochemical detection, and mechanism analysis.
Collapse
|
6
|
Gu J, Ye R, Xu Y, Yin Y, Li S, Chen H. A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Wiswell D, Neupane D, Chen M, Bowman EP, Linn D, Sawant A, Chackerian A, Zhang S, Escandón E. A capillary electrophoresis based approach for the identification of anti-drug antibodies against camelid VHH biologics (Nanobodies®). J Pharmacol Toxicol Methods 2020; 103:106872. [PMID: 32387500 DOI: 10.1016/j.vascn.2020.106872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 01/19/2023]
Abstract
Undesired immune responses against protein therapeutics may adversely affect the pharmacokinetics, efficacy, and safety of the product. The presence of anti-drug-antibodies (ADA) has been the key determinant of immunogenic responses. Here we describe the use of a capillary electrophoresis platform for the identification of ADAs against several experimental camelid VHH biologics (Nanobodies®). Hereafter, we refer to this assay as WESADA. We modified the Wes platform by ProteinSimple to screen serum samples for ADA against covalently linked multi-modular Nanobodies and compared it to standard ADA methodologies. We were able to identify ADA positive samples and determine which individual VHH module in a multivalent Nanobody construct stimulated the predominant ADA response. WESADA requires denaturation of the experimental immobilized drug, which could affect recognition of the immunogenic epitope and alter ADA signal. To address this issue, we demonstrated that signal can be immunodepleted by pre-incubation of serum samples with native Nanobody. This capillary electrophoresis based approach allows for rapid analysis without the need for individually tailored assay optimization or reagent labeling, while consuming small amounts of sample and drug. It also allows for the simultaneous ADA analysis of multiple targets of different molecular size in the same experimental sample. WESADA is not intended to replace traditional ADA assay formats, but it facilitates the expedient immunogenic assessment of a large number of experimental drug candidates in the early developmental space.
Collapse
Affiliation(s)
- Derek Wiswell
- PPDM ADME Biologics, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Divas Neupane
- PPDM ADME Biologics, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Minchao Chen
- PPDM Bioanalytics, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Edward P Bowman
- Immunology and IMRs, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Douglas Linn
- Pharmacology, MRL, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Anandi Sawant
- Immunology and IMRs, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Alissa Chackerian
- Immunology and IMRs, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Shuli Zhang
- PPDM Bioanalytics, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Enrique Escandón
- PPDM ADME Biologics, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA 94080, USA.
| |
Collapse
|
8
|
Arvin NE, Dawod M, Lamb DT, Anderson JP, Furtaw MD, Kennedy RT. Fast Immunoassay for Microfluidic Western Blotting by Direct Deposition of Reagents onto Capture Membrane. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:1606-1616. [PMID: 32661464 PMCID: PMC7357712 DOI: 10.1039/d0ay00207k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Western blotting is a widely used protein assay platform, but the technique requires long analysis times and multiple manual steps. Microfluidic systems are currently being explored for increased automation and reduction of analysis times, sample volumes, and reagent consumption for western blots. Previous work has demonstrated that proteins separated by microchip electrophoresis can be captured on membranes by dragging the microchip outlet across the membrane. This process reduces the separation and transfer time of a western blot to a few minutes. To further improve the speed and miniaturization of a complete western blot, a microscale immunoassay with direct deposition of immunoassay reagents has been developed. Flow deposition of antibodies is used to overcome diffusion limited binding kinetics so that the entire immunoassay can be completed in 1 h with detection sensitivity comparable to incubation steps requiring 20 h. The use of low microliter/min flow rates with antibody reagents applied directly and locally to the membrane where the target proteins have been captured, reduced antibody consumption ~30-fold. The complete western blot was applied to the detection of GAPDH and β-Tubulin from A431 cell lysate.
Collapse
Affiliation(s)
- Natalie E. Arvin
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
- Vaccine Analytical R&D, Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Don T. Lamb
- LI-COR Biosciences, 4647 Superior St., Lincoln, Nebraska 68504, United States
| | - Jon P. Anderson
- LI-COR Biosciences, 4647 Superior St., Lincoln, Nebraska 68504, United States
| | - Michael D. Furtaw
- LI-COR Biosciences, 4647 Superior St., Lincoln, Nebraska 68504, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109, United States
- Corresponding author: Robert T. Kennedy, , Tel: 734-615-4363, Fax: 745-615-6462
| |
Collapse
|
9
|
|
10
|
Pillai-Kastoori L, Heaton S, Shiflett SD, Roberts AC, Solache A, Schutz-Geschwender AR. Antibody validation for Western blot: By the user, for the user. J Biol Chem 2019; 295:926-939. [PMID: 31819006 PMCID: PMC6983856 DOI: 10.1074/jbc.ra119.010472] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Well-characterized antibody reagents play a key role in the reproducibility of research findings, and inconsistent antibody performance leads to variability in Western blotting and other immunoassays. The current lack of clear, accepted standards for antibody validation and reporting of experimental details contributes to this problem. Because the performance of primary antibodies is strongly influenced by assay context, recommendations for validation and usage are unique to each type of immunoassay. Practical strategies are proposed for the validation of primary antibody specificity, selectivity, and reproducibility using Western blot analysis. The antibody should produce reproducible results within and between Western blotting experiments and the observed effect confirmed with a complementary or orthogonal method. Routine implementation of standardized antibody validation and reporting in immunoassays such as Western blotting may promote improved reproducibility across the global life sciences community.
Collapse
Affiliation(s)
| | - Sam Heaton
- Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, United Kingdom
| | | | - Annabelle C Roberts
- Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, United Kingdom
| | - Alejandra Solache
- Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, United Kingdom
| | | |
Collapse
|
11
|
Cruz Walma DA, Collins JW. Western Blotting with Solutions containing Nanoliter Volumes of Antibody. CURRENT PROTOCOLS IN CELL BIOLOGY 2019; 84:e87. [PMID: 31483112 PMCID: PMC6727981 DOI: 10.1002/cpcb.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Whether screening small mammal serum during antibody production or attempting to preserve a stock of precious antibody, this protocol's western blotting method using aliquots containing nanoliter volumes of antibody will benefit researchers. Time-tested western blotting workflows allowing separation and analysis of proteins are routinely utilized in clinical and laboratory settings. The necessity for relatively large quantities of antibody is a major limitation to this universal tool. This article provides a step-by-step protocol for detecting proteins of interest with solutions containing nanoliter volumes of antibody without altering the preceding gel electrophoresis and transfer methods. Important considerations, frequently encountered problems, and means of optimizing reproducibility are discussed. Complementary diagrams, images, and videos are provided. The protocol is demonstrated using 0.3 nanoliters of anti-serum to detect fibronectin in a human foreskin fibroblast cell line. Finally, two support protocols detailing methods of extracting proteins from cultured cells are reported. Published 2019. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Joshua W Collins
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Development of aptamers against unpurified proteins. Biotechnol Bioeng 2017; 114:2706-2716. [DOI: 10.1002/bit.26389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/24/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
|