1
|
Miao Z, Zhou J. Multiscale Modeling and Simulation of Zwitterionic Anti-fouling Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7980-7995. [PMID: 40105095 DOI: 10.1021/acs.langmuir.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Zwitterionic materials with cationic and anionic moieties in the same chain, being electrically neutral, have excellent hydrophilicity, stability, biocompatibility, and outstanding anti-biofouling performance. Because of their unique properties, zwitterionic materials are widely applied to membrane separation, drug delivery, surface coating, etc. However, what is the root of their unique properties? It is necessary to study the structure-property relationships of zwitterionic compounds to guide the design and development of zwitterionic materials. Modeling and simulation methods are considered to be efficient technologies for understanding advanced materials in principle. This Review systematically summarizes the computational exploration of zwitterionic materials in recent years. First, the classes of zwitterionic materials are summarized. Second, the different scale simulation methods are introduced briefly. To reveal the structure-property relationships of zwitterionic materials, multiscale modeling and simulation studies at different spatial and temporal scales are summarized. The study results indicated that the strong electrostatic interaction between zwitterions with water molecules promotes formation of a stable hydration layer, namely, superhydrophilicity, leading to the excellent anti-fouling properties. Finally, we offer our viewpoint on the development and application of simulation techniques on zwitterionic materials exploration in the future. This work establishes a bridge from atomic and molecular scales to mesoscopic and macroscopic scales and helps to provide an in-depth understanding of the structure-property relationships of zwitterionic materials.
Collapse
Affiliation(s)
- Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
2
|
Gutierrez-Romero L, Díez P, Montes-Bayón M. Bioanalytical strategies to evaluate cisplatin nanodelivery systems: From synthesis to incorporation in individual cells and biological response. J Pharm Biomed Anal 2024; 237:115760. [PMID: 37839264 DOI: 10.1016/j.jpba.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Cisplatin metallodrugs have been widely used in the treatment of multiple cancers over the last years. Nevertheless, its limited effectiveness, development of acquired drug resistances, and toxic effects decrease nowadays their application in clinical settings. Aiming at improving their features, investigations have been oriented towards the coupling of cisplatin to nanocarriers, like liposomes or inorganic nanoparticles. Moreover, these systems can be further developed to allow targeted co-delivery of drugs. In this review, we describe the major nanosystems and the optimal analytical strategies for their assessment. Finally, we describe the main biological effects of these metallodrug conjugates and the available approaches for their study.
Collapse
Affiliation(s)
- Lucia Gutierrez-Romero
- Department of Physical and Analytical Chemistry. Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Paula Díez
- Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Maria Montes-Bayón
- Department of Physical and Analytical Chemistry. Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain.
| |
Collapse
|
3
|
Molecular dynamics simulation study of DNA conformation changes caused by the dinuclear platinum(II) complexes with the bisphosphonate group. J Inorg Biochem 2023; 243:112179. [PMID: 36989944 DOI: 10.1016/j.jinorgbio.2023.112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Bisphosphonate (BP) has been widely used as a bone-targeting group, and the BP-modified platinum(II) complexes have shown potential to as anticancer drugs against bone-related diseases, such as osteosarcoma. DNA conformation changes induced by the BP-modified dinuclear platinum(II) complexes have been investigated using molecular dynamics simulations. The results indicated that the BP-modified dinuclear platinum(II) complexes coordinated to DNA results in DNA structural distortions, including twisting, unwinding and bending. Furthermore, the rigidity of the bridging linkers in the BP-modified platinum(II) complex may induce more significant DNA structural distortions with same spans. The results provide the detail information of DNA conformational changes induced by the BP-modified platinum(II) complexes with different flexibility of bridging linkers, and are helpful for exploring novel platinum-based antitumor drugs.
Collapse
|
4
|
Giusto E, Žárská L, Beirne DF, Rossi A, Bassi G, Ruffini A, Montesi M, Montagner D, Ranc V, Panseri S. Graphene Oxide Nanoplatforms to Enhance Cisplatin-Based Drug Delivery in Anticancer Therapy. NANOMATERIALS 2022; 12:nano12142372. [PMID: 35889596 PMCID: PMC9321599 DOI: 10.3390/nano12142372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022]
Abstract
Chemotherapeutics such as platinum-based drugs are commonly used to treat several cancer types, but unfortunately, their use is limited by several side effects, such as high degradation of the drug before entering the cells, off-target organ toxicity and development of drug resistance. An interesting strategy to overcome such limitations is the development of nanocarriers that could enhance cellular accumulation in target cells in addition to decreasing associated drug toxicity in normal cells. Here, we aim to prepare and characterize a graphene-oxide-based 2D nanoplatform functionalised using highly branched, eight-arm polyethylene-glycol, which, owing to its high number of available functional groups, offers considerable loading capacity over its linear modalities and represents a highly potent nanodelivery platform as a versatile system in cancer therapy. The obtained results show that the GO@PEG carrier allows for the use of lower amounts of Pt drug compared to a Pt-free complex while achieving similar effects. The nanoplatform accomplishes very good cellular proliferation inhibition in osteosarcoma, which is strictly related to increased cellular uptake. This enhanced cellular internalization is also observed in glioblastoma, although it is less pronounced due to differences in metabolism compared to osteosarcoma. The proposed GO@PEG nanoplatform is also promising for the inhibition of migration, especially in highly invasive breast carcinoma (i.e., MDA-MB-231 cell line), neutralizing the metastatic process. The GO@PEG nanoplatform thus represents an interesting tool in cancer treatment that can be specifically tailored to target different cancers.
Collapse
Affiliation(s)
- Elena Giusto
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
| | - Ludmila Žárská
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic;
| | | | - Arianna Rossi
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Studies of Messina, 98100 Messina (ME), Italy
| | - Giada Bassi
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
- Department of Neuroscience, Imaging and Clinical Sciences, University of Studies G. d’Annunzio Chieti-Pescara, 66100 Chieti (CH), Italy
| | - Andrea Ruffini
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
| | - Monica Montesi
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland;
- Correspondence: (D.M.); (V.R.); (S.P.)
| | - Vaclav Ranc
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic;
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hnevotinska 5, 77900 Olomouc, Czech Republic
- Correspondence: (D.M.); (V.R.); (S.P.)
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
- Correspondence: (D.M.); (V.R.); (S.P.)
| |
Collapse
|
5
|
Li X, Wang L, Wang L, Yu J, Lu G, Zhao W, Miao C, Zou C, Wu J. Overcoming therapeutic failure in osteosarcoma via Apatinib-encapsulated hydrophobic poly(ester amide) nanoparticles. Biomater Sci 2021; 8:5888-5899. [PMID: 33001086 DOI: 10.1039/d0bm01296c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anti-angiogenic tyrosine kinase inhibitors (TKIs) have been proved to be effective in prolonging progression-free survival in advanced osteosarcoma. However, osteosarcoma stem-like cells persist for a long time and ultimately cause disease recurrence and therapy resistance. Here, we reveal that inefficient accumulation of Apatinib, an anti-angiogenic TKI, induces the expression of ribosome-associated genes in osteosarcoma, and confers apoptosis resistance. An engineered nanoscale delivery system based on hydrophobic poly(ester amide) has been established to effectively deliver Apatinib to improve the treatment. Notably, the considerable uptake by osteosarcoma cells enables this nanodrug to distribute increasingly inside the tumor. Furthermore, the delivered nano-Apatinib can suppress osteosarcoma stemness and enhance osteosarcoma stem-like cell apoptosis, and overcomes the crucial bottleneck of the unfavorable stem-like cell residue for TKI therapy. Importantly, nano-Apatinib significantly inhibits the osteosarcoma stem-like cell-derived tumor growth in contrast with free Apatinib, with minimal side effects. These results suggest that this Apatinib-loaded nano delivery system may serve as a promising strategy to solve the issue of TKI therapeutic resistance existing in advanced osteosarcoma.
Collapse
Affiliation(s)
- Xiangyu Li
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi 046000, P. R. China.
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Li Wang
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Jiaming Yu
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Guohao Lu
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Congxiu Miao
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi 046000, P. R. China.
| | - Changye Zou
- Musculoskeletal Oncology Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jun Wu
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi 046000, P. R. China. and School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Cheng C, Meng Y, Zhang Z, Li Y, Liu C, Zhang Q. pH responsible and fluorescent Cy5.5-PEG-g-A-HA/CDDP complex nanoparticles: synthesis, characterization, and application for targeted drug delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:58. [PMID: 31127370 DOI: 10.1007/s10856-019-6260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/06/2019] [Indexed: 05/25/2023]
Abstract
Clinical application of cisplatin (CDDP) against various solid tumors is often limited due to its poor selectivity and severe side effect. Considering this, in our study, CDDP was incorporated in fluorescent PEG amine grafted aldehyde hyaluronic acid by imine bond and metal ion coordination bond linking and formed a complex, the complex was then self-assembled into nanoparticles in water simply. FT-IR, XRD, DLS and SEM analysis demonstrated that the nanoparticles were prepared successfully and exhibited a spherical structure with size ranged from 216.4 to 372.3 nm in diameter. CDDP releasing from the nanoparticles was in a controlled manner, and had faster release rate at lower pH, indicating the nanoparticles were responsive to tumor micro-acid environment. Since fluorescent Cy5.5 and targeting hyaluronic acid existed on the surface of the nanoparticles, CLSM images clearly showed that the nanoparticles could target and internalize into HeLa cells, and then inhibited the growth of HeLa cells. In addition, MTT, AO-EB staining, and hemolysis assay showed that the nanoparticles had good cyto-/hemo-compatibility. Hence, the nanoparticles had the potential to be used for cancer therapy and diagnosis. The further in vivo experiment will be shown in the next work. pH responsible and fluorescent Cy5.5-PEG-g-A-HA/CDDP complex nanoparticles were facilely fabricated for controlled and targeted delivery of CDDP.
Collapse
Affiliation(s)
- Cui Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China.
| | - Yabin Meng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Zhihong Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Ya Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Chun Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P.R. China
| |
Collapse
|
7
|
Delineation of proapoptotic signaling of anthracene-shelled M2L4 metallacapsules and their synergistic activity with curcumin in cisplatin-sensitive and resistant tumor cell lines. Invest New Drugs 2019; 37:1117-1126. [DOI: 10.1007/s10637-019-00738-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
|
8
|
Yang C, Mi X, Su H, Yang J, Gu Y, Zhang L, Sun W, Liang X, Zhang C. GE11-PDA-Pt@USPIOs nano-formulation for relief of tumor hypoxia and MRI/PAI-guided tumor radio-chemotherapy. Biomater Sci 2019; 7:2076-2090. [DOI: 10.1039/c8bm01492b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GE11-PDA-Pt@USPIOs can relieve tumor hypoxic conditions efficiently and are highly effective for radio-chemotherapy of EGFR-positive tumors.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| | - Xuan Mi
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| | - Huilan Su
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jingxing Yang
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Yiyun Gu
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Lu Zhang
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Wenshe Sun
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute
- The University of Queensland
- QLD 4102
- Australia
| | - Chunfu Zhang
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| |
Collapse
|
9
|
Zhang C, Zhang H, Han M, Yang X, Pei C, Xu Z, Du J, Li W, Chen S. DNA–affibody nanoparticle delivery system for cisplatin-based breast cancer chemotherapy. RSC Adv 2019; 9:1982-1989. [PMID: 35516156 PMCID: PMC9059769 DOI: 10.1039/c8ra08735k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/06/2019] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is the most widely used anticancer drug, but its side effects limit the maximum systemic dose. To circumvent the side effects, a DNA tetrahedron–affibody nanoparticle was prepared by combination of a DNA chain with cisplatin via interstrand crosslinks or adducts. Each nanocarrier can bind ∼68 molecules of cisplatin. This cisplatin nanoparticle exhibited high selectivity and inhibition for breast cancer HER2 overexpressing cells BT474 and lower toxicity in MCF-7 cells with low HER2 expression. The nano-drug inhibited the growth of BT474 cells by 94.57% at 512 nM (containing 33.3 μM cisplatin), which was higher than that of cisplatin (82.9%, 33.3 μM). The novel nano-drug cisplatin-DNA tetrahedron-affibody has high specificity, high efficacy, and low toxicity for the treatment of HER2-overexpressing breast cancers.![]()
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - HongLei Zhang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - MengNan Han
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - XueLi Yang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - ChaoHong Pei
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - ZhiDong Xu
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Jie Du
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Wei Li
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Shengxi Chen
- Center for BioEnergetics
- Biodesign Institute
- Arizona State University
- Tempe 85287
- USA
| |
Collapse
|
10
|
Smith WR, Hudson PW, Ponce BA, Rajaram Manoharan SR. Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord 2018; 19:67. [PMID: 29499666 PMCID: PMC5833027 DOI: 10.1186/s12891-018-1990-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Abstract
The utility of nanotechnology in medicine, specifically within the field of orthopedics, is a topic of extensive research. Our review provides a unique comprehensive overview of the current and potential future uses of nanotechnology with respect to orthopedic sub-specialties. Nanotechnology offers an immense assortment of novel applications, most notably the use of nanomaterials as scaffolds to induce a more favorable interaction between orthopedic implants and native bone. Nanotechnology has the capability to revolutionize the diagnostics and treatment of orthopedic surgery, however the long-term health effects of nanomaterials are poorly understood and extensive research is needed regarding clinical safety.
Collapse
Affiliation(s)
- Walter Ryan Smith
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | - Parke William Hudson
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | - Brent Andrew Ponce
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | | |
Collapse
|
11
|
Zhang Z, Wang X, Luo C, Zhu C, Wang K, Zhang C, Guo Z. Dinuclear Platinum(II) Complexes with Bone-Targeting Groups as Potential Anti-Osteosarcoma Agents. Chem Asian J 2017; 12:1659-1667. [DOI: 10.1002/asia.201700577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/26/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Zhenqin Zhang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
- School of Pharmacy; Nanjing Medical University; Nanjing 211166 China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210023 China
| | - Cheng Luo
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Chengcheng Zhu
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Kun Wang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Changli Zhang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
12
|
Ding Y, Zhai K, Pei P, Lin Y, Ma Y, Zhu H, Shao M, Yang X, Tao W. Encapsulation of cisplatin in a pegylated calcium phosphate nanoparticle (CPNP) for enhanced cytotoxicity to cancerous cells. J Colloid Interface Sci 2017; 493:181-189. [PMID: 28092816 DOI: 10.1016/j.jcis.2017.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
HYPOTHESIS Exchange of the chloride ion (Cl-) ligands of cisplatin with carboxylates is widely used in fabricating cisplatin loaded nanoparticles for improved cancer therapy. However, the dynamic exchange may cause premature cisplatin release and even disintegration of the nanoparticles in Cl--containing medium such as in plasma. Molecules bearing carboxylates are capable of mediating the mineralization process of calcium phosphate; therefore, it is possible to overcome the disadvantage by sequestering cisplatin in a calcium phosphate nanoparticle (CPNP). EXPERIMENTS With the hypothesis, precipitation reaction of calcium nitrate and disodium hydrogen phosphate was performed in a solution of poly(ethylene glycol)-poly(acrylic acid) block copolymers with their carboxylates partly conjugated with cisplatin. Then, structure, physicochemical properties, and bioactivity of the product were carefully investigated with multiple characterization methods. FINDINGS It was revealed a pegylated, cisplatin encapsulated CPNP was prepared; and with appropriate mole ratio of cisplatin to carboxylates, the nanoparticle encapsulated cisplatin efficiently (>90%), was stable and almost entirely prevented the cisplatin release in Cl--containing medium at pH 7.4 but released them in an acidic condition, and showed moderately and greatly enhanced cytotoxicities to the lung cancer cell line A549 and its cisplatin resistance form A549R respectively in comparison with the free cisplatin.
Collapse
Affiliation(s)
- Yang Ding
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Kang Zhai
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Pei Pei
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, PR China
| | - Yinchu Ma
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Huixia Zhu
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Mingfeng Shao
- Department of Urology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, PR China.
| | - Xianzhu Yang
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Wei Tao
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
13
|
Li SL, Hou Y, Hu Y, Yu J, Wei W, Lu H. Phosphatase-triggered cell-selective release of a Pt(iv)-backboned prodrug-like polymer for an improved therapeutic index. Biomater Sci 2017; 5:1558-1566. [DOI: 10.1039/c6bm00935b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A Pt(iv)-backboned prodrug-like polymer was synthesized and formulated to a phosphatase-responsive polyion complex for cell-selective delivery.
Collapse
Affiliation(s)
- Shao-Lu Li
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yingqin Hou
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yali Hu
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jin Yu
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing, 10090
- People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|