1
|
Surov AO, Ramazanova AG, Voronin AP, Drozd KV, Churakov AV, Perlovich GL. Virtual Screening, Structural Analysis, and Formation Thermodynamics of Carbamazepine Cocrystals. Pharmaceutics 2023; 15:pharmaceutics15030836. [PMID: 36986697 PMCID: PMC10052035 DOI: 10.3390/pharmaceutics15030836] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, the existing set of carbamazepine (CBZ) cocrystals was extended through the successful combination of the drug with the positional isomers of acetamidobenzoic acid. The structural and energetic features of the CBZ cocrystals with 3- and 4-acetamidobenzoic acids were elucidated via single-crystal X-ray diffraction followed by QTAIMC analysis. The ability of three fundamentally different virtual screening methods to predict the correct cocrystallization outcome for CBZ was assessed based on the new experimental results obtained in this study and data available in the literature. It was found that the hydrogen bond propensity model performed the worst in distinguishing positive and negative results of CBZ cocrystallization experiments with 87 coformers, attaining an accuracy value lower than random guessing. The method that utilizes molecular electrostatic potential maps and the machine learning approach named CCGNet exhibited comparable results in terms of prediction metrics, albeit the latter resulted in superior specificity and overall accuracy while requiring no time-consuming DFT computations. In addition, formation thermodynamic parameters for the newly obtained CBZ cocrystals with 3- and 4-acetamidobenzoic acids were evaluated using temperature dependences of the cocrystallization Gibbs energy. The cocrystallization reactions between CBZ and the selected coformers were found to be enthalpy-driven, with entropy terms being statistically different from zero. The observed difference in dissolution behavior of the cocrystals in aqueous media was thought to be caused by variations in their thermodynamic stability.
Collapse
Affiliation(s)
- Artem O Surov
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - Anna G Ramazanova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | | | - Ksenia V Drozd
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - Andrei V Churakov
- Institute of General and Inorganic Chemistry RAS, Leninsky Prosp. 31, 119991 Moscow, Russia
| | - German L Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| |
Collapse
|
2
|
Comparative study of the cocrystals with layered/cavity structure in regulating in vitro pharmaceutical properties of diuretic acetazolamide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Tailoring Chlorthalidone Aqueous Solubility by Cocrystallization: Stability and Dissolution Behavior of a Novel Chlorthalidone-Caffeine Cocrystal. Pharmaceutics 2022; 14:pharmaceutics14020334. [PMID: 35214066 PMCID: PMC8876770 DOI: 10.3390/pharmaceutics14020334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
A cocrystal of the antihypertensive drug chlorthalidone (CTD) with caffeine (CAF) was obtained (CTD-CAF) by the slurry method, for which a 2:1 stoichiometric ratio was found by powder and single-crystal X-ray diffraction analysis. Cocrystal CTD-CAF showed a supramolecular organization in which CAF molecules are embedded in channels of a 3D network of CTD molecules. The advantage of the cocrystal in comparison to CTD is reflected in a threefold solubility increase and in the dose/solubility ratios, which diminished from near-unit values for D0D to 0.29 for D0CC. Furthermore, dissolution experiments under non-sink conditions showed improved performance of CTD-CAF compared with pure CTD. Subsequent studies showed that CTD-CAF cocrystals transform to CTD form I where CTD precipitation inhibition could be achieved in the presence of pre-dissolved polymer HPMC 80–120 cPs, maintaining supersaturation drug concentrations for at least 180 min. Finally, dissolution experiments under sink conditions unveiled that the CTD-CAF cocrystal induced, in pH-independent manner, faster and more complete CTD dissolution when compared to commercial tablets of CTD. Due to the stability and dissolution behavior of the novel CTD-CAF cocrystal, it could be used to develop solid dosage forms using a lower CTD dose to obtain the same therapeutic response and fewer adverse effects.
Collapse
|
4
|
A Review of Pharmaceutical Nano-Cocrystals: A Novel Strategy to Improve the Chemical and Physical Properties for Poorly Soluble Drugs. CRYSTALS 2021. [DOI: 10.3390/cryst11050463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, many commercial drugs have poor solubility and bioavailability. Cocrystals are formulated to modulate active pharmaceutical ingredients’ properties with improved solubility, dissolution, and bioavailability compared to their pristine individual components in the pharmaceutical industry. Nano-cocrystals, crystals in the nano range, can further enhance these properties because of not only the cocrystal structure, but also the large surface to volume ratio of nanocrystals. Even though there are many studies on cocrystals, the research of pharmaceutical nano-cocrystals is still in the initial stage. Thus, it is necessary to conduct a systematic study on pharmaceutical nano-cocrystals. In this review, the possible preparation approaches of nano-cocrystals have been reported. To have a comprehensive understanding of nano-cocrystals, some analytical techniques and characterizations will be discussed in detail. In addition, the feasible therapeutic application of nano-cocrystals will be presented. This work is expected to provide guidance to develop new nano-cocrystals with commercial value in the pharmaceutical industry.
Collapse
|
5
|
Ross SA, Hurt AP, Antonijevic M, Bouropoulos N, Ward A, Basford P, McAllister M, Douroumis D. Continuous Manufacture and Scale-Up of Theophylline-Nicotinamide Cocrystals. Pharmaceutics 2021; 13:419. [PMID: 33804705 PMCID: PMC8004052 DOI: 10.3390/pharmaceutics13030419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was the manufacturing and scale-up of theophylline-nicotinamide (THL-NIC) pharmaceutical cocrystals processed by hot-melt extrusion (HME). The barrel temperature profile, feed rate and screw speed were found to be the critical processing parameters with a residence time of approximately 47 s for the scaled-up batches. Physicochemical characterization using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction of bulk and extruded materials revealed the formation of high purity cocrystals (98.6%). The quality of THL-NIC remained unchanged under accelerated stability conditions.
Collapse
Affiliation(s)
- Steven A. Ross
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK; (S.A.R.); (A.P.H.); (M.A.)
| | - Andrew P. Hurt
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK; (S.A.R.); (A.P.H.); (M.A.)
| | - Milan Antonijevic
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK; (S.A.R.); (A.P.H.); (M.A.)
| | - Nicolaos Bouropoulos
- Department of Materials Science, University of Patras, Rio, 26504 Patras, Greece;
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature, Chemical Processes, 26504 Patras, Greece
| | - Adam Ward
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, West Yorkshire HD1 3DH, UK;
| | - Pat Basford
- Pfizer Global Research & Development, Ramsgate Road, Sandwich CT13 9NJ, UK; (P.B.); (M.M.)
| | - Mark McAllister
- Pfizer Global Research & Development, Ramsgate Road, Sandwich CT13 9NJ, UK; (P.B.); (M.M.)
| | - Dennis Douroumis
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK; (S.A.R.); (A.P.H.); (M.A.)
| |
Collapse
|
6
|
Vasilev NA, Surov AO, Voronin AP, Drozd KV, Perlovich GL. Novel cocrystals of itraconazole: Insights from phase diagrams, formation thermodynamics and solubility. Int J Pharm 2021; 599:120441. [PMID: 33675927 DOI: 10.1016/j.ijpharm.2021.120441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022]
Abstract
In this work, the cocrystallization approach was applied to itraconazole (ITR), a very slightly soluble triazole antifungal drug, which led to the formation of two new solid forms of ITR with 4-aminobenzoic acid (4AmBA) and 4-hydroxybenzamide (4OHBZA). A thermodynamic analysis of the solid-liquid binary phase diagrams for the (ITR + 4AmBA) and (ITR + 4OHBZA) systems provided conclusive evidence of the cocrystal stoichiometry: 1:1 for the cocrystal with 4-aminobenzoic acid, and 1:2 for the cocrystal with 4-hydroxybenzamide. Powder X-Ray diffraction analysis confirmed the formation of two different polymorphic forms of the [ITR + 4OHBZA] (1:2) cocrystal obtained either through solution or melt crystallization. Cocrystal formation and polymorphic transition processes were investigated in detail by the DSC and HSM methods. The thermodynamic functions of cocrystal formation were estimated from the solubility of the cocrystals and the corresponding solubility of the pure compounds at different temperatures. The combination of ITR and 4OHBZA was found to be more favorable than the reaction between ITR and 4AmBA in terms of both Gibbs energy and enthalpy. The pH-solubility behavior of the cocrystals was investigated at different pH values using eutectic concentrations of the components and the cocrystal solubility advantage was estimated. It was found that the cocrystallization of itraconazole with 4OHBZA and 4AmBA can potentially increase the drug solubility at pH1.2 and 37 °C by 225 and 64 times, respectively. The cocrystal dissolution behavior in biorelevant media was analyzed in terms of Cmax, σmax parameters (the maximum ITR concentration and supersaturation), and AUC (the concentration area under the curve during the dissolution - supersaturation - precipitation process). The cocrystals had similar σmax values during the dissolution and sustained supersaturation for up to 6 h, which gave them an advantage in the AUC values (13-37 times higher) over the drug. The differences in the dissolution profiles of the cocrystals were rationalized in terms of their dissolution rate values.
Collapse
Affiliation(s)
- Nikita A Vasilev
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia
| | - Artem O Surov
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia
| | - Alexander P Voronin
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia
| | - Ksenia V Drozd
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia
| | - German L Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia.
| |
Collapse
|
7
|
Wu Y, Hao X, Li J, Guan A, Zhou Z, Guo F. New insight into improving the solubility of poorly soluble drugs by preventing the formation of their hydrogen-bonds: a case of dapsone salts with camphorsulfonic and 5-sulfosalicylic acid. CrystEngComm 2021. [DOI: 10.1039/d1ce00847a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The improved solubility of two salts of dapsone (DAP) was investigated from the view point of structures and hydrogen bonding.
Collapse
Affiliation(s)
- Yanhui Wu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiujia Hao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jianting Li
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Aiying Guan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhengzheng Zhou
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
8
|
Surov AO, Voronin AP, Vasilev NA, Ilyukhin AB, Perlovich GL. Novel cocrystals of the potent 1,2,4-thiadiazole-based neuroprotector with carboxylic acids: virtual screening, crystal structures and solubility performance. NEW J CHEM 2021. [DOI: 10.1039/d0nj05644h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Five new multicomponent solid forms of the biologically active 1,2,4-thiadiazole derivative (TDZH) with dicarboxylic and hydroxybenzoic acids have been discovered by combined virtual/experimental cocrystal screening.
Collapse
Affiliation(s)
- Artem O. Surov
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| | - Alexander P. Voronin
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| | - Nikita A. Vasilev
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| | | | - German L. Perlovich
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| |
Collapse
|
9
|
Dual-drug co-crystal synthesis for synergistic in vitro effect of three key first-line antiretroviral drugs. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zhang Z, Yu N, Xue C, Gao S, Deng Z, Li M, Liu C, Castellot J, Han S. Potential Anti-Tumor Drug: Co-Crystal 5-Fluorouracil-nicotinamide. ACS OMEGA 2020; 5:15777-15782. [PMID: 32656396 PMCID: PMC7345411 DOI: 10.1021/acsomega.9b03574] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/11/2020] [Indexed: 05/12/2023]
Abstract
5-Fluorouracil-nicotinamide (5-FU-NCM), a co-crystal with a 2D layer structure formed by hydrogen bonds, was synthesized by solvent evaporation and liquid phase-assisted grinding at room temperature. Compared to 5-FU alone, the results of solubility, oil-water partition coefficient, anti-tumor effect in vivo and vitro, acute toxicity, and pharmacokinetic parameters indicate that the co-crystal is a potential anti-tumor drug.
Collapse
Affiliation(s)
- Zhuyan Zhang
- Pharmaceutical
Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key
Laboratory of Functional Inorganic Material Chemistry, Ministry of
Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Nan Yu
- Pharmaceutical
Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chang Xue
- Tufts
University Sackler School of Biomedical Sciences, Boston, Massachusetts 02111, United States
| | - Shan Gao
- Key
Laboratory of Functional Inorganic Material Chemistry, Ministry of
Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
- E-mail: (S.G.)
| | - Zhaopeng Deng
- Key
Laboratory of Functional Inorganic Material Chemistry, Ministry of
Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Min Li
- Pharmaceutical
Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Cong Liu
- Department
of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - John Castellot
- Department
of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
- E-mail: (J.C.)
| | - Siying Han
- Department
of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- E-mail: (S.H.)
| |
Collapse
|
11
|
The role of pH and dose/solubility ratio on cocrystal dissolution, drug supersaturation and precipitation. Eur J Pharm Sci 2020; 152:105422. [PMID: 32531350 DOI: 10.1016/j.ejps.2020.105422] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Cocrystals that are more soluble than the constituent drug, generate supersaturation levels during dissolution and are predisposed to conversion to the less soluble drug. Drug release studies during cocrystal dissolution generally compare several cocrystals and their crystal structures. However, the influence of drug dose and solubility in different dissolution media has been scarcely reported. The present study aims to investigate how drug dose/solubility ratio (Do=Cdose/Sdrug), cocrystal solubility advantage over drug (SA=Scocrystal/Sdrug), and dissolution media affect cocrystal dissolution-drug supersaturation and precipitation (DSP) behavior. SA and Ksp values of 1:1 cocrystals of meloxicam-salicylic acid (MLX-SLC) and meloxicam-maleic acid (MLX-MLE) were determined at cocrystal/drug eutectic points. Results demonstrate that both cocrystals enhance SA by orders of magnitude (20 to 100 times for the SLC and over 300 times for the MLE cocrystal) in the pH range of 1.6 to 6.5. It is shown that during dissolution, cocrystals regulate the interfacial pH (pHint) to 1.6 for MLX-MLE and 4.5 for MLX-SLC, therefore diminishing the cocrystal dissolution rate dependence on bulk pH. Do values ranged from 2 (pH 6.5) to 410 (pH 1.6) and were mostly determined by the drug solubility dependence on pH. Drug release profiles show that maximum supersaturation (σmax=Cmax/Sdrug)and AUC increased with increasing Do as pH decreased. When Do>>SA, the cocrystal solubility is not sufficient to dissolve the dose so that a dissolution-precipitation quasi-equilibrium state is able to sustain supersaturation for the extent of the experiment (24 h). When Do<<SA, cocrystal solubility is more than adequate to dissolve the dose. Low σmax values (1.7 and 1.5) near the value of Do (2.3 and 2.4) were observed, where a large fraction of the cocrystal added is dissolved to reach σmax. Two different cocrystal to drug conversion pathways were observed: (1) surface nucleation of the metastable MLX polymorph IV on the dissolving cocrystal preceeded formation of the stable MLX polymorph I in bulk solution (in all conditions without FeSSIF), and (2) bulk nucleation of the stable MLX polymorph (in FeSSIF). The interplay between cocrystal SA, Do, and drug precipitation pathways provide a framework to interpret and understand the DSP behavior of cocrystals.
Collapse
|
12
|
Manin AN, Drozd KV, Surov AO, Churakov AV, Volkova TV, Perlovich GL. Identification of a previously unreported co-crystal form of acetazolamide: a combination of multiple experimental and virtual screening methods. Phys Chem Chem Phys 2020; 22:20867-20879. [DOI: 10.1039/d0cp02700f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we demonstrate an approach of trying multiple methods in a more comprehensive search for co-crystals of acetazolamide.
Collapse
Affiliation(s)
- Alex N. Manin
- G.A. Krestov Institute of Solution Chemistry RAS
- 153045 Ivanovo
- Russia
| | - Ksenia V. Drozd
- G.A. Krestov Institute of Solution Chemistry RAS
- 153045 Ivanovo
- Russia
| | - Artem O. Surov
- G.A. Krestov Institute of Solution Chemistry RAS
- 153045 Ivanovo
- Russia
| | | | | | | |
Collapse
|
13
|
Kavanagh ON, Croker DM, Walker GM, Zaworotko MJ. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov Today 2019; 24:796-804. [DOI: 10.1016/j.drudis.2018.11.023] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 01/06/2023]
|
14
|
Continuous, one-step synthesis of pharmaceutical cocrystals via hot melt extrusion from neat to matrix-assisted processing – State of the art. Int J Pharm 2019; 558:426-440. [DOI: 10.1016/j.ijpharm.2019.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 12/29/2022]
|
15
|
Safari M, Shamsipur M, Zohrabi P, Ebrahimzadeh H. Solid-phase extraction combined with dispersive liquid-liquid microextraction/HPLC-UV as a sensitive and efficient method for extraction, pre-concentration and simultaneous determination of antiretroviral drugs nevirapine, efavirenz and nelfinavir in pharmaceutical formulations and biological samples. J Pharm Biomed Anal 2019; 166:95-104. [DOI: 10.1016/j.jpba.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 01/19/2023]
|
16
|
Diab S, McQuade DT, Gupton BF, Gerogiorgis DI. Process Design and Optimization for the Continuous Manufacturing of Nevirapine, an Active Pharmaceutical Ingredient for HIV Treatment. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00381] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Samir Diab
- Institute for Materials and Processes (IMP), School of Engineering, University of Edinburgh, The Kings Buildings, Edinburgh EH9 3FB, Scotland, U.K
| | - D. Tyler McQuade
- Department of Chemical and Life Sciences Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3028, United States
| | - B. Frank Gupton
- Department of Chemical and Life Sciences Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3028, United States
| | - Dimitrios I. Gerogiorgis
- Institute for Materials and Processes (IMP), School of Engineering, University of Edinburgh, The Kings Buildings, Edinburgh EH9 3FB, Scotland, U.K
| |
Collapse
|
17
|
Fernández LP, Brasca R, Alcaráz MR, Culzoni MJ. High-throughput chemometrically assisted flow-injection method for the simultaneous determination of multi-antiretrovirals in water. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Chen YM, Rodríguez-Hornedo N. Cocrystals Mitigate Negative Effects of High pH on Solubility and Dissolution of a Basic Drug. CRYSTAL GROWTH & DESIGN 2018; 18:1358-1366. [PMID: 30505243 PMCID: PMC6261521 DOI: 10.1021/acs.cgd.7b01206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Weakly basic drugs are predisposed to order of magnitude decreases in solubility and dissolution as pH increases from 1 to 7 along the gastrointestinal tract. Such behavior is known to be detrimental to drug absorption. The work presented here shows how cocrystals of basic drugs with acidic coformers can mitigate these negative effects. Cocrystals of ketoconazole (KTZ) with adipic, fumaric, and succinic acids exhibit a parabolic solubility dependence on pH such that with increasing pH, solubility decreases, reaches a minimum, and increases. Cocrystals exhibit pHmax values between 3.6 and 3.8, above which they generate supersaturation with respect to drug. Cocrystal supersaturation index (SA), defined as Scocrystal/Sdrug, changes from 1 (pHmax) to 10-30 (pH 5) to 800 - 3,000 (pH 6.5). SA represents the driving force for cocrystal conversion to the less soluble drug during dissolution. SA is not expected to be equal to the observed supersaturation, but it is of great value to classify cocrystals in terms of their risk of conversion. Cocrystal dissolution behavior was analyzed in terms of Cmax, σmax (maximum KTZ concentration and supersaturation), AUCdiss (KTZ concentration area under the curve during dissolution-precipitation), and SA. The three cocrystals studied achieved σmax values between 5 and 15 and sustained supersaturation for 1 to 3 h, resulting in AUCdiss advantage over drug in the range of 2 to 12. SA values as high as 800 were associated with enhanced drug exposure. SA of 3,000 led to limited exposure, very rapid conversion, and no measurable supersaturation. Since cocrystals may be more soluble than needed and/or too soluble to be developed, there is great value in recognizing the relationship between supersaturation threshold, cocrystal solubility, and SA. This becomes more important as cocrystal SA is dependent on pH and other environmental conditions.
Collapse
Affiliation(s)
- Yitian M Chen
- Department of Pharmaceutical Sciences, University of Michigan Ann Arbor, Michigan 48109-1065, United States
| | - Naír Rodríguez-Hornedo
- Department of Pharmaceutical Sciences, University of Michigan Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
19
|
Avdeef A. Cocrystal Solubility Product Prediction Using an in combo Model and Simulations to Improve Design of Experiments. Pharm Res 2018; 35:40. [DOI: 10.1007/s11095-018-2343-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
20
|
Perlovich GL. Two-component molecular crystals: relationship between the entropy term and the molecular volume of co-crystal formation. CrystEngComm 2018. [DOI: 10.1039/c8ce00592c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There are very few articles that investigate the thermodynamic formation of two-component molecular crystals.
Collapse
Affiliation(s)
- German L. Perlovich
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo
- Russia
| |
Collapse
|
21
|
Surov AO, Voronin AP, Vener MV, Churakov AV, Perlovich GL. Specific features of supramolecular organisation and hydrogen bonding in proline cocrystals: a case study of fenamates and diclofenac. CrystEngComm 2018. [DOI: 10.1039/c8ce01458b] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New zwitterionic cocrystals of fenamate drugs and diclofenac with the naturally occurring amino acid l-proline have been obtained and thoroughly characterised by a variety of experimental and theoretical techniques.
Collapse
Affiliation(s)
- Artem O. Surov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| | - Alexander P. Voronin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| | | | - Andrei V. Churakov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Moscow
- Russia
| | - German L. Perlovich
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| |
Collapse
|
22
|
Surov AO, Churakov AV, Proshin AN, Dai XL, Lu T, Perlovich GL. Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways. Phys Chem Chem Phys 2018; 20:14469-14481. [DOI: 10.1039/c8cp02532k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermodynamic stability relationships and the formation pathways of the cocrystals of 1,2,4-thiadiazole-based neuroprotector with gallic acid were investigated.
Collapse
Affiliation(s)
- Artem O. Surov
- Institution of the Russian Academy of Sciences
- G.A. Krestov Institute of Solution Chemistry RAS
- 153045 Ivanovo
- Russia
| | - Andrei V. Churakov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Moscow
- Russia
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences
- Chernogolovka
- Russia
| | - Xia-Lin Dai
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou
- China
| | - Tongbu Lu
- Institute for New Energy Materials and Low Carbon Technologies
- Tianjin University of Technology
- Tianjin
- China
| | - German L. Perlovich
- Institution of the Russian Academy of Sciences
- G.A. Krestov Institute of Solution Chemistry RAS
- 153045 Ivanovo
- Russia
| |
Collapse
|
23
|
Bhattacharya B, Mondal A, Soni SR, Das S, Bhunia S, Bal Raju K, Ghosh A, Malla Reddy C. Multidrug salt forms of norfloxacin with non-steroidal anti-inflammatory drugs: solubility and membrane permeability studies. CrystEngComm 2018. [DOI: 10.1039/c8ce00900g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dissolution properties and membrane permeability studies were conducted for four newly prepared multidrug salts of norfloxacin with four NSAIDs, diclofenac, diflunisal, mefenamic acid and indomethacin.
Collapse
Affiliation(s)
- Biswajit Bhattacharya
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Amit Mondal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Saundray Raj Soni
- Department of Pharmaceutical Sciences and Technology
- Birla Institute of Technology
- Ranchi 835215
- India
| | - Susobhan Das
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Surojit Bhunia
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - K. Bal Raju
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences and Technology
- Birla Institute of Technology
- Ranchi 835215
- India
| | - C. Malla Reddy
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| |
Collapse
|
24
|
Cavanagh KL, Maheshwari C, Rodríguez-Hornedo N. Understanding the Differences Between Cocrystal and Salt Aqueous Solubilities. J Pharm Sci 2018; 107:113-120. [PMID: 29097226 PMCID: PMC5774673 DOI: 10.1016/j.xphs.2017.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
This work challenges the popular notion that pharmaceutical salts are more soluble than cocrystals. There are cocrystals that are more soluble than salt forms of a drug and vice-versa. It all depends on the interplay between the chemistry of both the solid and solution phases. Aqueous solubility, pHmax, and supersaturation index (SA = SCC/SD or Ssalt/SD) of cocrystals and salts of a basic drug, lamotrigine (LTG), were determined, and mathematical models that predict the influence of cocrystal/salt Ksp and Ka were derived. Ksp and SA followed the order LTG-nicotinamide cocrystal (18) > LTG-HCl salt (12) > LTG-saccharin salt (5) > LTG-methylparaben cocrystal (1) > LTG-phenobarbital cocrystal (0.2). The values in parenthesis represent SA under nonionizing conditions. Cocrystal/salt solubility and thermodynamic stability are determined by pH and will drastically change with a single unit change in pH. pHmax values ranged from 5.0 (saccharin salt) to 6.4 (methylparaben cocrystal) to 9.0 (phenobarbital cocrystal). Cocrystal/salt pHmax dependence on pKsp and pKa shows that cocrystals and salts exhibit different behavior. Solubility and pHmax are as important as supersaturation index in assessing the stability and risks associated with conversions of supersaturating forms.
Collapse
Affiliation(s)
- Katie L Cavanagh
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Chinmay Maheshwari
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Naír Rodríguez-Hornedo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109-1065.
| |
Collapse
|
25
|
Miranda JA, Garnero C, Zoppi A, Sterren V, Ayala AP, Longhi MR. Characterization of systems with amino-acids and oligosaccharides as modifiers of biopharmaceutical properties of furosemide. J Pharm Biomed Anal 2017; 149:143-150. [PMID: 29112903 DOI: 10.1016/j.jpba.2017.10.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 11/18/2022]
Abstract
Furosemide is the most commonly prescribed diuretic drug in spite of its suboptimal biopharmaceutical properties. In this work, the addition of different amino-acids was studied with the aim of selecting an enhancer of the furosemide solubility. The best results were obtained with arginine. Also, binary (furosemide:arginine) and ternary (furosemide:arginine:β-cyclodextrin and furosemide:arginine:maltodextrin) systems were prepared by the kneading method and they were compared with their corresponding physical mixtures. These new systems were characterized by Fourier transform infrared and Raman spectroscopy, X-ray powder diffractometry, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. In addition, dissolution studies were performed in simulated gastric fluid. The best results in relation to improving biopharmaceutical properties were obtained with a binary combination of furosemide and arginine, demonstrating that this system could result in a suitable candidate for the development of a promising pharmaceutical formulation of the drug.
Collapse
MESH Headings
- Arginine/chemistry
- Calorimetry, Differential Scanning/instrumentation
- Calorimetry, Differential Scanning/methods
- Chemistry, Pharmaceutical/instrumentation
- Chemistry, Pharmaceutical/methods
- Diuretics/chemistry
- Drug Compounding/instrumentation
- Drug Compounding/methods
- Drug Liberation
- Furosemide/chemistry
- Microscopy, Electron, Scanning/instrumentation
- Microscopy, Electron, Scanning/methods
- Oligosaccharides/chemistry
- Powders
- Solubility
- Spectroscopy, Fourier Transform Infrared/instrumentation
- Spectroscopy, Fourier Transform Infrared/methods
- Spectrum Analysis, Raman/instrumentation
- Spectrum Analysis, Raman/methods
- Thermogravimetry/methods
- X-Ray Diffraction/instrumentation
- X-Ray Diffraction/methods
Collapse
Affiliation(s)
- Julieta Abraham Miranda
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Claudia Garnero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Ariana Zoppi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Vanesa Sterren
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Alejandro P Ayala
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Marcela R Longhi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
26
|
Cocrystal formation, crystal structure, solubility and permeability studies for novel 1,2,4-thiadiazole derivative as a potent neuroprotector. Eur J Pharm Sci 2017; 109:31-39. [DOI: 10.1016/j.ejps.2017.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/16/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
27
|
Cao F, Amidon GL, Rodríguez-Hornedo N, Amidon GE. Mechanistic Basis of Cocrystal Dissolution Advantage. J Pharm Sci 2017; 107:380-389. [PMID: 28989017 DOI: 10.1016/j.xphs.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development.
Collapse
Affiliation(s)
- Fengjuan Cao
- University of Michigan, College of Pharmacy, Ann Arbor, Michigan 48109-1065
| | - Gordon L Amidon
- University of Michigan, College of Pharmacy, Ann Arbor, Michigan 48109-1065
| | | | - Gregory E Amidon
- University of Michigan, College of Pharmacy, Ann Arbor, Michigan 48109-1065.
| |
Collapse
|
28
|
Kaur R, Cavanagh KL, Rodríguez-Hornedo N, Matzger AJ. Multidrug Cocrystal of Anticonvulsants: Influence of Strong Intermolecular Interactions on Physiochemical Properties. CRYSTAL GROWTH & DESIGN 2017; 17:5012-5016. [PMID: 31537980 PMCID: PMC6752747 DOI: 10.1021/acs.cgd.7b00741] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A drug-drug cocrystal of two anticonvulsants, lamotrigine and phenobarbital, is presented. In the crystal structure, molecules form heterodimers via N-H···O and N-H···N hydrogen bonding. The intrinsic dissolution rate (IDR) and solubility of the cocrystal were measured in phosphate buffer (pH 7.2) and simulated gastric fluid (without pepsin), and compared to pure APIs. Dissolution experiments found suppressed IDR of the cocrystal with rates in the order pure PB > pure LTG > cocrystal. The solubility measurements were consistent with the dissolution behavior. The presence of strong heterodimers in the cocrystal compared to weaker homodimers in the parent drugs is implicated for the reduced solubility and dissolution rate.
Collapse
Affiliation(s)
| | | | | | - Adam J. Matzger
- Department of Chemistry
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv Drug Deliv Rev 2017; 117:111-146. [PMID: 28931472 DOI: 10.1016/j.addr.2017.09.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
The main goal of a novel drug development is to obtain it with optimal physiochemical, pharmaceutical and biological properties. Pharmaceutical companies and scientists modify active pharmaceutical ingredients (APIs), which often are cocrystals, salts or carefully selected polymorphs, to improve the properties of a parent drug. To find the best form of a drug, various advanced characterization methods should be used. In this review, we have described such analytical methods, dedicated to solid drug forms. Thus, diffraction, spectroscopic, thermal and also pharmaceutical characterization methods are discussed. They all are necessary to study a solid API in its intrinsic complexity from bulk down to the molecular level, gain information on its structure, properties, purity and possible transformations, and make the characterization efficient, comprehensive and complete. Furthermore, these methods can be used to monitor and investigate physical processes, involved in the drug development, in situ and in real time. The main aim of this paper is to gather information on the current advancements in the analytical methods and highlight their pharmaceutical relevance.
Collapse
|
30
|
Avdeef A. Cocrystal solubility product analysis - Dual concentration-pH mass action model not dependent on explicit solubility equations. Eur J Pharm Sci 2017; 110:2-18. [PMID: 28392495 DOI: 10.1016/j.ejps.2017.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
A novel general computational approach is described to address many aspects of cocrystal (CC) solubility product (Ksp) determination of drug substances. The CC analysis program, pDISOL-X, was developed and validated with published model systems of various acid-base combinations of active pharmaceutical ingredients (APIs) and coformers: (i) carbamazepine cocrystal systems with 4-aminobenzoic acid, cinnamic acid, saccharin, and salicylic acid, (ii) for indomethacin with saccharin, (iii) for nevirapine with maleic acid, saccharin, and salicylic acid, and (iv) for gabapentin with 3-hydroxybenzoic acid. In all systems but gabapentin, the coformer is much more soluble than the API. The model systems selected are those with available published dual concentration-pH data, one set for the API and one set for the coformer, generally measured at eutectic points (thermodynamically-stable three phases: solution, cocrystal, and crystalline API or coformer). The carbamazepine-cinnamic acid CC showed a substantial elevation in the API equilibrium concentration above pH5, consistent with the formation of a complex between carbamazepine and cinnamate anion. The analysis of the gabapentin:3-hydroxybenzoic acid 1:1 CC system indicated four zones of solid suspensions: coformer (pH<3.25), coformer and cocrystal eutectic (pH3.25-4.44), cocrystal (pH4.44-5.62), and API (pH>5.62). The general approach allows for testing of many possible equilibrium models, including those comprising drug-coformer complexation. The program calculates the ionic strength at each pH. From this, the equilibrium constants are adjusted for activity effects, based on the Stokes-Robinson hydration theory. The complete speciation analysis of the CC systems may provide useful insights into pH-sensitive dissolution effects that could potentially influence bioavailability.
Collapse
Affiliation(s)
- Alex Avdeef
- in-ADME Research, 1732 First Avenue #102, New York, NY 10128, USA.
| |
Collapse
|
31
|
Kuminek G, Cao F, Bahia de Oliveira da Rocha A, Gonçalves Cardoso S, Rodríguez-Hornedo N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev 2016; 101:143-166. [PMID: 27137109 DOI: 10.1016/j.addr.2016.04.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022]
Abstract
Besides enhancing aqueous solubilities, cocrystals have the ability to fine-tune solubility advantage over drug, supersaturation index, and bioavailability. This review presents important facts about cocrystals that set them apart from other solid-state forms of drugs, and a quantitative set of rules for the selection of additives and solution/formulation conditions that predict cocrystal solubility, supersaturation index, and transition points. Cocrystal eutectic constants are shown to be the most important cocrystal property that can be measured once a cocrystal is discovered, and simple relationships are presented that allow for prediction of cocrystal behavior as a function of pH and drug solubilizing agents. Cocrystal eutectic constant is a stability or supersatuation index that: (a) reflects how close or far from equilibrium a cocrystal is, (b) establishes transition points, and (c) provides a quantitative scale of cocrystal true solubility changes over drug. The benefit of this strategy is that a single measurement, that requires little material and time, provides a principled basis to tailor cocrystal supersaturation index by the rational selection of cocrystal formulation, dissolution, and processing conditions.
Collapse
Affiliation(s)
- Gislaine Kuminek
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor 48109-1065, MI, USA
| | - Fengjuan Cao
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor 48109-1065, MI, USA
| | | | - Simone Gonçalves Cardoso
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Naír Rodríguez-Hornedo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor 48109-1065, MI, USA
| |
Collapse
|