1
|
Foster HM, Li R, Wang Y, Castañar L, Nilsson M, Adams RW, Morris GA. Rationalising spin relaxation during slice-selective refocusing pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107789. [PMID: 39447419 DOI: 10.1016/j.jmr.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Slice-selective refocusing pulses are powerful building blocks in contemporary magnetic resonance experiments, but their use in quantitative applications is complicated by the site-dependent signal loss they introduce. One source of this attenuation is the spin relaxation that occurs during such pulses, which causes losses that depend on the specific longitudinal and transverse relaxation time constants for a given resonance. This dependence is complicated both by any amplitude shaping of the radiofrequency pulse, and by the presence of the spatial encoding pulsed field gradient. The latter causes the net signal measured to be the weighted sum of signal contributions from a continuous range of offsets from resonance. In general, each offset will make a different contribution to the overall signal, and will be attenuated by a different mixture of longitudinal and transverse relaxation that is dictated by the different trajectories that the nuclear magnetisations take during experiments. Despite this complex behaviour, we present evidence from experiments and numerical simulations showing that in practical experimental applications a relatively simple empirical function can be used to accurately predict relaxational attenuation during slice-selective refocusing pulses. This approach may be of practical use in correcting for relaxational losses in quantitative applications of slice-selective pulse methods such as Zangger-Sterk pure shift NMR.
Collapse
Affiliation(s)
- Howard M Foster
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Runchao Li
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Yushi Wang
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Laura Castañar
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom; Department of Organic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Madrid 28040, Spain
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Gareth A Morris
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
2
|
Khangura JS, Tang B, Chong K, Evans R. Improving the analysis of phase-separated bio-fuel samples with slice-selective total correlation NMR spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5820-5825. [PMID: 39141322 DOI: 10.1039/d4ay01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Separated samples are a particular challenge for NMR experiments. The boundary is severely detrimental to high-resolution spectra and normal NMR experiments simply add the two spectra of the two layers together. Pyrolysis bio-oils represent an increasingly important alternative fuel resource yet readily separate, whether due to naturally high water content or due to blending, a common practice for producing a more viable fuel. Slice-selective NMR, where the NMR spectrum of only a thin slice of the total sample is acquired, is extended here and improved, with slice-selective two-dimensional correlation experiments used to resolve the distinct chemical spectra of the various components of the phase-separated blended fuel mixtures. Analysis of how the components of any blended biofuel samples partition between the two layers is an important step towards understanding the separation process and may provide insight into mitigating the problem.
Collapse
Affiliation(s)
- Jaskamal Singh Khangura
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK.
| | - Bridget Tang
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK.
| | - Katie Chong
- Energy and Bioproducts Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Robert Evans
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
3
|
Lysak DH, Bermel W, Moxley-Paquette V, Michal C, Ghosh-Biswas R, Soong R, Nashman B, Lacerda A, Simpson AJ. Cutting without a Knife: A Slice-Selective 2D 1H- 13C HSQC NMR Sequence for the Analysis of Inhomogeneous Samples. Anal Chem 2023; 95:14392-14401. [PMID: 37713676 DOI: 10.1021/acs.analchem.3c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Nuclear magnetic resonance (NMR) is a powerful technique with applications ranging from small molecule structure elucidation to metabolomics studies of living organisms. Typically, solution-state NMR requires a homogeneous liquid, and the whole sample is analyzed as a single entity. While adequate for homogeneous samples, such an approach is limited if the composition varies as would be the case in samples that are naturally heterogeneous or layered. In complex samples such as living organisms, magnetic susceptibility distortions lead to broad 1H line shapes, and thus, the additional spectral dispersion afforded by 2D heteronuclear experiments is often required for metabolite discrimination. Here, a novel, slice-selective 2D, 1H-13C heteronuclear single quantum coherence (HSQC) sequence was developed that exclusively employs shaped pulses such that only spins in the desired volume are perturbed. In turn, this permits multiple volumes in the tube to be studied during a single relaxation delay, increasing sensitivity and throughput. The approach is first demonstrated on standards and then used to isolate specific sample/sensor elements from a microcoil array and finally study slices within a living earthworm, allowing metabolite changes to be discerned with feeding. Overall, slice-selective NMR is demonstrated to have significant potential for the study of layered and other inhomogeneous samples of varying complexity. In particular, its ability to select subelements is an important step toward developing microcoil receive-only arrays to study environmental toxicity in tiny eggs, cells, and neonates, whereas localization in larger living species could help better correlate toxin-induced biochemical responses to the physical localities or organs involved.
Collapse
Affiliation(s)
- Daniel H Lysak
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Vincent Moxley-Paquette
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Carl Michal
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Rajshree Ghosh-Biswas
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8,Canada
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8,Canada
| | - Andre J Simpson
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
4
|
Monaco S, Angulo J, Wallace M. Imaging Saturation Transfer Difference (STD) NMR: Affinity and Specificity of Protein-Ligand Interactions from a Single NMR Sample. J Am Chem Soc 2023. [PMID: 37487192 PMCID: PMC10401705 DOI: 10.1021/jacs.3c02218] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
We have combined saturation transfer difference NMR (STD NMR) with chemical shift imaging (CSI) and controlled concentration gradients of small molecule ligands to develop imaging STD NMR, a new tool for the assessment of protein-ligand interactions. Our methodology allows the determination of protein-ligand dissociation constants (KD) and assessment of the binding specificity in a single NMR tube, avoiding time-consuming titrations. We demonstrate the formation of suitable and reproducible concentration gradients of ligand along the vertical axis of the tube, against homogeneous protein concentration, and present a CSI pulse sequence for the acquisition of STD NMR experiments at different positions along the sample tube. Compared to the conventional methodology in which the [ligand]/[protein] ratio is increased manually, we can perform STD NMR experiments at a greater number of ratios and construct binding epitopes in a fraction (∼20%) of the experimental time. Second, imaging STD NMR also allows us to screen for non-specific binders, by monitoring any variation of the binding epitope map at increasing [ligand]/[protein] ratios. Hence, the proposed method does carry the potential to speed up and smooth out the drug discovery process.
Collapse
Affiliation(s)
- Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jesus Angulo
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, Sevilla 41092, Spain
| | - Matthew Wallace
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
5
|
Berry DBG, Clegg I, Codina A, Lyall CL, Lowe JP, Hintermair U. Convenient and accurate insight into solution-phase equilibria from FlowNMR titrations. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00123c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution phase titrations are made easy by multi-nuclear FlowNMR spectroscopy with automated, continuous titre addition to give accurate insights into Brønsted acid/base, hydrogen bonding, Lewis acid/base and metal/ligand binding equilibria under native conditions.
Collapse
Affiliation(s)
- Daniel B. G. Berry
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ian Clegg
- Bruker UK Ltd, Banner Lane, CV4 9GH Coventry, UK
| | - Anna Codina
- Bruker UK Ltd, Banner Lane, CV4 9GH Coventry, UK
| | - Catherine L. Lyall
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - John P. Lowe
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY Bath, UK
| |
Collapse
|
6
|
Baishya B, Verma A, Parihar R. Accelerated 13C detection by concentrating the NMR sample in a biphasic solvent system. Analyst 2021; 146:6582-6591. [PMID: 34586127 DOI: 10.1039/d1an00470k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CDCl3 is the most frequently used solvent for the NMR investigation of organic compounds. Busy chemistry labs need to investigate hundreds of compounds daily. While 1H NMR investigation takes a couple of minutes, recording 13C NMR spectra necessitates hours of signal averaging due to the low abundance and low sensitivity of 13C nuclei. The longer acquisition time for 13C NMR results in a loss of precious spectrometer time in a shared multi-user environment. A regular 5 mm o.d. NMR tube is the most commonly used tube for NMR in organic chemistry labs and is also the cheapest option. We show that for analytes soluble in the CDCl3 solvent using a regular 5 mm o.d. NMR tube, the speed of 13C observation can be enhanced by a factor of two by resorting to a sample preparation method that employs a biphasic system made of H2O or D2O at the top of another layer of CDCl3. By using the biphasic system of two immiscible solvents, the analyte can be concentrated in the CDCl3 layer (within the more sensitive volume of the NMR coil), resulting in the improvement of the signal to noise ratio (SNR) by a factor of up to 1.8 for 13C and 2D 1H-13C HSQC spectra, which results in more than two-fold reduction in the experimental time. 1H NMR and other 2D NMR also get a sensitivity boost. The amount of CDCl3 required for sample preparation can also be reduced by 40% using this biphasic system (CDCl3/H2O). Sample preparation in such an immiscible biphasic system is effortless and straightforward. The performance of such biphasic samples is closer to that of Shigemi tubes and better than that of 3 mm o.d. tubes.
Collapse
Affiliation(s)
- Bikash Baishya
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India.
| | - Ajay Verma
- Govt. Degree College, Tyuni, 248199, Dehradun, Uttarakhand, India
| | - Rashmi Parihar
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India. .,Department of Bioinformatics, Dr A. P. J. Abdul Kalam Technical University, Lucknow-226021, U.P., India
| |
Collapse
|
7
|
β-Cyclodextrin Derivative Grafted on Silica Gel Represents a New Polymeric Sorbent for Extracting Nitisinone from Model Physiological Fluids. Molecules 2021; 26:molecules26195945. [PMID: 34641489 PMCID: PMC8512355 DOI: 10.3390/molecules26195945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 10/28/2022] Open
Abstract
Nitisinone (NTBC) is used in the treatment of disorders affecting the tyrosine pathway, including hereditary tyrosinemia type I, alkaptonuria, and neuroblastoma. An inappropriate dosage of this therapeutic drug causes side effects; therefore, it is necessary to develop a rapid and sensitive method to monitor the content of NTBC in patients' blood. This study aimed to develop anew polymeric sorbent containing β-cyclodextrin (β-CD) derivatives grafted on silica gel to effectively extract NTBC from model physiological fluids. The inclusion complex formed between β-CD and NTBC was examined by proton nuclear magnetic resonance spectroscopy. The novel sorbents with derivatives of β-CD were prepared on modified silica gel using styrene as a comonomer, ethylene glycol dimethacrylate as a crosslinking agent, and 2,2'-azo-bis-isobutyronitrile as a polymerization initiator. The obtained products were characterized via Fourier transform infrared spectroscopy and then used as sorbents as part of a solid phase extraction technique. High NTBC recovery (70%indicated that the developed polymeric sorbent may be suitable for extracting this compound from patients' blood samples.
Collapse
|
8
|
NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation. Nat Chem Biol 2021; 17:608-614. [PMID: 33686294 DOI: 10.1038/s41589-021-00752-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023]
Abstract
Many RNA-binding proteins undergo liquid-liquid phase separation, which underlies the formation of membraneless organelles, such as stress granules and P-bodies. Studies of the molecular mechanism of phase separation in vitro are hampered by the coalescence and sedimentation of organelle-sized droplets interacting with glass surfaces. Here, we demonstrate that liquid droplets of fused in sarcoma (FUS)-a protein found in cytoplasmic aggregates of amyotrophic lateral sclerosis and frontotemporal dementia patients-can be stabilized in vitro using an agarose hydrogel that acts as a cytoskeleton mimic. This allows their spectroscopic characterization by liquid-phase NMR and electron paramagnetic resonance spectroscopy. Protein signals from both dispersed and condensed phases can be observed simultaneously, and their respective proportions can be quantified precisely. Furthermore, the agarose hydrogel acts as a cryoprotectant during shock-freezing, which facilitates pulsed electron paramagnetic resonance measurements at cryogenic temperatures. Surprisingly, double electron-electron resonance measurements revealed a compaction of FUS in the condensed phase.
Collapse
|
9
|
Seeger K. Simple and Rapid (Extraction) Protocol for NMR Metabolomics-Direct Measurement of Hydrophilic and Hydrophobic Metabolites Using Slice Selection. Anal Chem 2021; 93:1451-1457. [PMID: 33370093 DOI: 10.1021/acs.analchem.0c03353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Investigating the metabolic profiles of solid sample materials with solution nuclear magnetic resonance (NMR) spectroscopy requires the extraction of these metabolites. This is commonly done by using two immiscible solvents such as water and chloroform for extraction. Subsequent solvent removal makes these extraction procedures very time-consuming. To shorten the preparation time of the NMR sample, the following protocol is proposed: the metabolites from a solid or liquid sample are extracted directly in the NMR tube, the NMR tube is centrifuged, and the metabolite profiles in the aqueous and organic phases are determined by using slice-selective proton NMR experiments. This protocol was tested with 11 black teas and 11 green teas, which can be easily distinguished by their metabolic profiles in the aqueous phase. As a test case for liquid samples, 29 milk samples were investigated. The geographical origin of the diaries where the milk was processed could not be determined unequivocally from the metabolic profiles of the hydrophilic metabolites; however, this was easily seen in the lipid profiles. As shown for the different test samples, the extraction protocol in combination with slice-selection NMR experiments is suitable for metabolic investigations. Because samples are rapidly processed, this approach can be used to explore different extraction strategies for metabolite isolation.
Collapse
Affiliation(s)
- Karsten Seeger
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
10
|
Guo T, Wang C, Wu H, Lee J, Zou G, Hou H, Sun X, Silvester DS, Ji X. Phase-Controllable Cobalt Phosphides Induced through Hydrogel for Higher Lithium Storages. Inorg Chem 2020; 59:6471-6480. [DOI: 10.1021/acs.inorgchem.0c00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tianxiao Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Congsen Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hanwen Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Junqiao Lee
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoyi Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Debbie S. Silvester
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
11
|
Wisniewska MA, Seland JG. Investigating structure-dependent diffusion in hydrogels using spatially resolved NMR spectroscopy. J Colloid Interface Sci 2019; 533:671-677. [PMID: 30195115 DOI: 10.1016/j.jcis.2018.08.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
HYPOTHESIS Incorporation of the drug-loaded surfactant micelles into polymer hydrogels is a common method used to achieve controlled drug delivery. The characterization of the diffusion processes in drug delivery systems is critical in order to tune the drug loading and release. EXPERIMENTS We present a simple and efficient NMR protocol to investigate the transport of the surfactant molecules in hydrogels on micro- and macroscale under non-equilibrium conditions. Our experimental protocol is based on a combination of 1H 1D NMR chemical shift imaging and slice-selective diffusion experiments, which enables determination of the mutual and self-diffusion coefficients of the surfactant in the non-equilibrium hydrogel-based system within the same short time frame. FINDINGS Our results show that the self-diffusion coefficient of the positively charged surfactant in the hydrogel (Dsgel) decreases with the increasing surfactant concentration until it reaches a plateau value of 6.6±0.5×10-11m2s-1. The surfactant self-diffusion in the solution (Dssln) remains constant over the experiment with an average value of 6.7±0.3×10-11m2s-1. The surfactant mutual diffusion coefficient obtained from 1D chemical shift imaging in this hydrogel system (Dm) is 7.7±0.5×10-11m2s-1. Correlation of the localized Ds to the 1D chemical shift images gives insight into the structure-dependent diffusional behavior of surfactant molecules in the hydrogel. This NMR protocol will be of great value in studies of concentration dependent structures on the interfaces between two immiscible liquids.
Collapse
|
12
|
Niklas T, Schulze P, Farès C. Cromolyn/gelatin mixtures as aqueous alignment media and utilization of their mechanical stability for a layering technique. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1176-1182. [PMID: 30091791 DOI: 10.1002/mrc.4786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, aqueous blends of cromolyn and gelatin ("cromogels") are introduced as anisotropic media. The addition of gelatin enables an advantageous adjustability of the strength, the homogeneity, and the stability of the cromolyn alignment. The mechanical stability of these polymer-dispersed liquid crystals is further utilized by stacking layers of D2 O/cromolyn/gelatin with varying component ratio. The resulting distinct phases with correspondingly different degrees of alignment can be targeted by spatially resolved NMR techniques. As a case study, we investigated sucrose in a two-phase system with neat D2 O and analyte layered over the anisotropic medium. A recently presented spatially selective coupled-type HSQC experiment allows the determination of one-bond C-H splitting in both phases.
Collapse
Affiliation(s)
- Thomas Niklas
- Chromatography Department, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- NMR Department, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Philipp Schulze
- Chromatography Department, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Christophe Farès
- NMR Department, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Dumez JN. Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:101-134. [PMID: 30527133 DOI: 10.1016/j.pnmrs.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 06/09/2023]
Abstract
A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.
Collapse
Affiliation(s)
- Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Wallace M, Adams DJ, Iggo JA. Titrations without the Additions: The Efficient Determination of pKa Values Using NMR Imaging Techniques. Anal Chem 2018; 90:4160-4166. [DOI: 10.1021/acs.analchem.8b00181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew Wallace
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Dave J. Adams
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Jonathan A. Iggo
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| |
Collapse
|
15
|
Pantoja CF, Bolaños JA, Bernal A, Wist J. Mutual Diffusion Driven NMR: a new approach for the analysis of mixtures by spatially resolved NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:519-524. [PMID: 27930830 DOI: 10.1002/mrc.4561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
We introduce a new approach for resolving the NMR spectra of mixtures that relies on the mutual diffusion of dissolved species when a concentration gradient is established within the NMR tube. This is achieved by cooling down a biphasic mixture of triethylamine and deuterated water below its mixing temperature, where a single phase is expected. Until equilibrium is reached, a gradient of concentration, from 'pure' triethylamine to 'pure' water, establishes within the tube. The amount of time required to reach this equilibrium is controlled by the mutual diffusion coefficient of both species. Moreover, a gradient of concentration exists for each additional compound dissolved in this system, related to the partition coefficient for that compound in the original biphasic state. Using slice selective experiments, it was possible to measure these concentration gradients and use them to separate signals from all the present species. We show the results acquired for a mixture composed of n-octanol, methanol, acetonitrile and benzene and compare them with those obtained by pulse field gradient NMR. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christian F Pantoja
- Chemistry Department, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia
| | - Jose A Bolaños
- Chemistry Department, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia
| | - Andrés Bernal
- Chemistry Department, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia
| | - Julien Wist
- Chemistry Department, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia
| |
Collapse
|
16
|
Wallace M, Iggo JA, Adams DJ. Probing the surface chemistry of self-assembled peptide hydrogels using solution-state NMR spectroscopy. SOFT MATTER 2017; 13:1716-1727. [PMID: 28165092 DOI: 10.1039/c6sm02404a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The surface chemistry of self-assembled hydrogel fibres - their charge, hydrophobicity and ion-binding dynamics - is recognised to play an important role in determining how the gels develop as well as their suitability for different applications. However, to date there are no established methodologies for the study of this surface chemistry. Here, we demonstrate how solution-state NMR spectroscopy can be employed to measure the surface chemical properties of the fibres in a range of hydrogels formed from N-functionalised dipeptides, an effective and versatile class of gelator that has attracted much attention. By studying the interactions with the gel fibres of a diverse range of probe molecules and ions, we can simultaneously study a number of surface chemical properties of the NMR invisible fibres in an essentially non-invasive manner. Our results yield fresh insights into the materials. Most notably, gel fibres assembled using different tiggering methods bear differing amounts of negative charge as a result of a partial deprotonation of the carboxylic acid groups of the gelators. We also demonstrate how chemical shift imaging (CSI) techniques can be applied to follow the formation of hydrogels along chemical gradients. We apply CSI to study the binding of Ca2+ and subsequent gelation of peptide assemblies at alkaline pH. Using metal ion-binding molecules as probes, we are able to detect the presence of bound Ca2+ ions on the surface of the gel fibres. We briefly explore how knowledge of the surface chemical properties of hydrogels could be used to inform their practical application in fields such as drug delivery and environmental remediation.
Collapse
Affiliation(s)
- Matthew Wallace
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| | - Jonathan A Iggo
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| | - Dave J Adams
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| |
Collapse
|