1
|
Denayer M, Vekeman J, Tielens F, De Proft F. Towards a predictive model for polymer solubility using the noncovalent interaction index: polyethylene as a case study. Phys Chem Chem Phys 2021; 23:25374-25387. [PMID: 34751286 DOI: 10.1039/d1cp04346c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we present the development of a novel, quantitative solubility descriptor based on the non-covalent interaction index. It is presented as a more insightful alternative to Hansen's solubility parameters and the COSMO model to assess and predict polymer solubility in different solvents. To this end, we studied the solvation behaviour as a function of the chain length of a single chain of arguably the most simple polymer, polyethylene, in anisole (solvent) and methanol (poor solvent) via molecular dynamics simulations. It was found that in anisole the solute maximized its interface with the solvent, whereas in methanol the macromolecule formed rod-like structures by folding on itself once the chain length surpassed a certain barrier. We assessed this behaviour - which can be related to solubility - quantitatively and qualitatively via well-known descriptors, namely the solvation free energy, and the solvent accessible surface area. In addition, we propose the non-covalent interaction (NCI) index as a versatile descriptor, providing information on the strength, as well as the nature, of the solute-solvent interactions, the solute's intramolecular interactions and on the solute's conformation, both qualitatively and quantitatively. Finally, as a quantitative measure for solubility, defined in this context as the solute's tendency to maximize its interactions with the solvent, we propose two new NCI-based descriptors: the relative integrated NCI density and the integrated NCI difference. The former represents the quantitative difference in solute-solvent interactions between a fully extended coil and the actual conformation during simulation and the latter the quantitative difference between the intermolecular (solute-solvent) and the intramolecular (in the solute) non-covalent interactions. The easy interpretation and calculation of these novel quantities open up the possibility of fast, reliable and insightful high-throughput screening of different (anti)solvent and solute combinations.
Collapse
Affiliation(s)
- Mats Denayer
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Jelle Vekeman
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Frederik Tielens
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| |
Collapse
|
2
|
Van Lommel R, De Borggraeve WM, De Proft F, Alonso M. Computational Tools to Rationalize and Predict the Self-Assembly Behavior of Supramolecular Gels. Gels 2021; 7:87. [PMID: 34287290 PMCID: PMC8293097 DOI: 10.3390/gels7030087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Supramolecular gels form a class of soft materials that has been heavily explored by the chemical community in the past 20 years. While a multitude of experimental techniques has demonstrated its usefulness when characterizing these materials, the potential value of computational techniques has received much less attention. This review aims to provide a complete overview of studies that employ computational tools to obtain a better fundamental understanding of the self-assembly behavior of supramolecular gels or to accelerate their development by means of prediction. As such, we hope to stimulate researchers to consider using computational tools when investigating these intriguing materials. In the concluding remarks, we address future challenges faced by the field and formulate our vision on how computational methods could help overcoming them.
Collapse
Affiliation(s)
- Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F Leuven Chem & Tech, P.O. Box 2404, 3001 Leuven, Belgium;
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F Leuven Chem & Tech, P.O. Box 2404, 3001 Leuven, Belgium;
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium;
| |
Collapse
|
3
|
Bolduc J, Koruza K, Luo T, Malo Pueyo J, Vo TN, Ezeriņa D, Messens J. Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities. Redox Biol 2021; 42:101959. [PMID: 33895094 PMCID: PMC8113037 DOI: 10.1016/j.redox.2021.101959] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/07/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Peroxiredoxins (Prdxs) sense and assess peroxide levels, and signal through protein interactions. Understanding the role of the multiple structural and post-translational modification (PTM) layers that tunes the peroxiredoxin specificities is still a challenge. In this review, we give a tabulated overview on what is known about human and bacterial peroxiredoxins with a focus on structure, PTMs, and protein-protein interactions. Armed with numerous cellular and atomic level experimental techniques, we look at the future and ask ourselves what is still needed to give us a clearer view on the cellular operating power of Prdxs in both stress and non-stress conditions.
Collapse
Affiliation(s)
- Jesalyn Bolduc
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Katarina Koruza
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Ting Luo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Julia Malo Pueyo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Trung Nghia Vo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| |
Collapse
|
4
|
Peskin AV, Winterbourn CC. The Enigma of 2-Cys Peroxiredoxins: What Are Their Roles? BIOCHEMISTRY (MOSCOW) 2021; 86:84-91. [PMID: 33705284 DOI: 10.1134/s0006297921010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
2-Cys peroxiredoxins are abundant thiol proteins that react efficiently with a wide range of peroxides. Unlike other enzymes, their exceptionally high reactivity does not rely on cofactors. The mechanism of oxidation and reduction of peroxiredoxins places them in a good position to act as antioxidants as well as key players in redox signaling. Understanding of the intimate details of peroxiredoxin functioning is important for translational research.
Collapse
Affiliation(s)
- Alexander V Peskin
- Centre for Free Radical Research, University of Otago Christchurch, Christchurch, Otago, 8140, New Zealand.
| | - Christine C Winterbourn
- Centre for Free Radical Research, University of Otago Christchurch, Christchurch, Otago, 8140, New Zealand
| |
Collapse
|
5
|
Dalla Tiezza M, Bickelhaupt FM, Flohé L, Maiorino M, Ursini F, Orian L. A dual attack on the peroxide bond. The common principle of peroxidatic cysteine or selenocysteine residues. Redox Biol 2020; 34:101540. [PMID: 32428845 PMCID: PMC7231847 DOI: 10.1016/j.redox.2020.101540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/07/2023] Open
Abstract
The (seleno)cysteine residues in some protein families react with hydroperoxides with rate constants far beyond those of fully dissociated low molecular weight thiol or selenol compounds. In case of the glutathione peroxidases, we could demonstrate that high rate constants are achieved by a proton transfer from the chalcogenol to a residue of the active site [Orian et al. Free Radic. Biol. Med. 87 (2015)]. We extended this study to three more protein families (OxyR, GAPDH and Prx). According to DFT calculations, a proton transfer from the active site chalcogenol to a residue within the active site is a prerequisite for both, creating a chalcogenolate that attacks one oxygen of the hydroperoxide substrate and combining the delocalized proton with the remaining OH or OR, respectively, to create an ideal leaving group. The “parking postions” of the delocalized proton differ between the protein families. It is the ring nitrogen of tryptophan in GPx, a histidine in GAPDH and OxyR and a threonine in Prx. The basic principle, however, is common to all four families of proteins. We, thus, conclude that the principle outlined in this investigation offers a convincing explanation for how a cysteine residue can become peroxidatic. In some protein families, (seleno)cysteine residues react with hydroperoxides with very high rate constants. In GPx, DFT models of the oxidation of the catalytic site support a two-step mechanism for the H2O2 reduction. This mechanism is here found to operate in other thiol-based enzymes, i.e. OxyR, GAPDH and Prx.
Collapse
Affiliation(s)
- M Dalla Tiezza
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - F M Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, the Netherlands; Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - L Flohé
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, V.le G. Colombo 3, 35121, Padova, Italy; Departamento de Bioquímica, Universidad de la República, Avda. General Flores 2125, 11800, Montevideo, Uruguay
| | - M Maiorino
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, V.le G. Colombo 3, 35121, Padova, Italy
| | - F Ursini
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, V.le G. Colombo 3, 35121, Padova, Italy
| | - L Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
6
|
Semelak JA, Battistini F, Radi R, Trujillo M, Zeida A, Estrin DA. Multiscale Modeling of Thiol Overoxidation in Peroxiredoxins by Hydrogen Peroxide. J Chem Inf Model 2019; 60:843-853. [PMID: 31718175 DOI: 10.1021/acs.jcim.9b00817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we employ a multiscale quantum-classical mechanics (QM/MM) scheme to investigate the chemical reactivity of sulfenic acids toward hydrogen peroxide, both in aqueous solution and in the protein environment of the peroxiredoxin alkyl hydroperoxide reductase E from Mycobacterium tuberculosis (MtAhpE). The reaction of oxidation of cysteine with hydrogen peroxides, catalyzed by peroxiredoxins, is usually accelerated several orders of magnitude in comparison with the analogous reaction in solution. The resulting cysteine sulfenic acid is then reduced in other steps of the catalytic cycle, recovering the original thiol. However, under some conditions, the sulfenic acid can react with another equivalent of oxidant to form a sulfinic acid. This process is called overoxidation and has been associated with redox signaling. Herein, we employed a multiscale scheme based on density function theory calculations coupled to the classical AMBER force field, developed in our group, to establish the molecular basis of thiol overoxidation by hydrogen peroxide. Our results suggest that residues that play key catalytic roles in the oxidation of MtAhpE are not relevant in the overoxidation process. Indeed, the calculations propose that the process is unfavored by this particular enzyme microenvironment.
Collapse
Affiliation(s)
- J A Semelak
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales , Ciudad Universitaria, Pab. 2 , CP 1428 , Buenos Aires , Argentina
| | - F Battistini
- Institute for Research in Biomedicine (IRB Barcelona) , The Barcelona Institute of Science and Technology , 08028 Barcelona , Spain
| | - R Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) , Facultad de Medicina , Av. Gral. Flores 2125 , CP 11800 Montevideo , Uruguay
| | - M Trujillo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) , Facultad de Medicina , Av. Gral. Flores 2125 , CP 11800 Montevideo , Uruguay
| | - A Zeida
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) , Facultad de Medicina , Av. Gral. Flores 2125 , CP 11800 Montevideo , Uruguay
| | - D A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales , Ciudad Universitaria, Pab. 2 , CP 1428 , Buenos Aires , Argentina
| |
Collapse
|
7
|
Roos G, Miranda-Quintana RA, Martínez González M. How Biochemical Environments Fine-Tune a Redox Process: From Theoretical Models to Practical Applications. J Phys Chem B 2018; 122:8157-8165. [PMID: 30040409 DOI: 10.1021/acs.jpcb.8b04736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, we give a new physical insight into how enzymatic environments influence a redox process. This is particularly important in a biochemical context, in which oxidoreductase enzymes and low-molecular-weight cofactors create a microenvironment, fine-tuning their specific redox potential. We present a new theoretical model, quantitatively backed up by quantum chemically calculated data obtained for key biological sulfur-based model reactions involved in preserving the cellular redox homeostasis during oxidative stress. We show that environmental effects can be quantitatively predicted from the thermodynamic cycle linking ΔΔ G(OX/RED)ref-ligand values to the differential interaction energy ΔΔ Gint of the reduced and oxidized species with the environment. Our obtained data can be linked to hydrogen-bond patterns found in protein active sites. The thermodynamic model is further understood in the framework of molecular orbital theory. The key insight of this work is that the intrinsic properties of neither a redox couple nor the interacting environment (e.g., ligand) are enough by themselves to uniquely predict reduction potentials. Instead, system-environment interactions need to be considered. This study is of general interest as redox processes are pivotal to empower, protect, or damage organisms. Our presented thermodynamic model allows a pragmatically evaluation on the expected influence of a particular environment on a redox process, necessary to fully understand how redox processes take place in living organisms.
Collapse
Affiliation(s)
- Goedele Roos
- CNRS UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) , Université de Lille , 1 Sciences et Technologies 50 Avenue de Halley BP 70478, 59658 Villeneuve d'Ascq Cedex, France
| | | | - Marco Martínez González
- Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry , University of Havana , 10400 Havana , Cuba.,Departamento de Química, y Centro de Química , Universidade de Coimbra , 3004-535 Coimbra , Portugal
| |
Collapse
|
8
|
Kamariah N, Eisenhaber B, Eisenhaber F, Grüber G. Active site C P-loop dynamics modulate substrate binding, catalysis, oligomerization, stability, over-oxidation and recycling of 2-Cys Peroxiredoxins. Free Radic Biol Med 2018; 118:59-70. [PMID: 29474868 DOI: 10.1016/j.freeradbiomed.2018.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 01/20/2023]
Abstract
Peroxiredoxins (Prxs) catalyse the rapid reduction of hydrogen peroxide, organic hydroperoxide and peroxynitrite, using a fully conserved peroxidatic cysteine (CP) located in a conserved sequence Pxxx(T/S)xxCP motif known as CP-loop. In addition, Prxs are involved in cellular signaling pathways and regulate several redox-dependent process related disease. The effective catalysis of Prxs is associated with alterations in the CP-loop between reduced, Fully Folded (FF), and oxidized, Locally Unfolded (LU) conformations, which are linked to dramatic changes in the oligomeric structure. Despite many studies, little is known about the precise structural and dynamic roles of the CP-loop on Prxs functions. Herein, the comprehensive biochemical and biophysical studies on Escherichia coli alkyl hydroperoxide reductase subunit C (EcAhpC) and the CP-loop mutants, EcAhpC-F45A and EcAhpC-F45P reveal that the reduced form of the CP-loop adopts conformational dynamics, which is essential for effective peroxide reduction. Furthermore, the point mutants alter the structure and dynamics of the reduced form of the CP-loop and, thereby, affect substrate binding, catalysis, oligomerization, stability and overoxidiation. In the oxidized form, due to restricted CP-loop dynamics, the EcAhpC-F45P mutant favours a decamer formation, which enhances the effective recycling by physiological reductases compared to wild-type EcAhpC. In addition, the study reveals that residue F45 increases the specificity of Prxs-reductase interactions. Based on these studies, we propose an evolution of the CP-loop with confined sequence conservation within Prxs subfamilies that might optimize the functional adaptation of Prxs into various physiological roles.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Bioinformatics Institute, Agency for Science, Technology and Research (A⁎STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A⁎STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A⁎STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; School of Computer Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A⁎STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
9
|
Nelson KJ, Perkins A, Van Swearingen AED, Hartman S, Brereton AE, Parsonage D, Salsbury FR, Karplus PA, Poole LB. Experimentally Dissecting the Origins of Peroxiredoxin Catalysis. Antioxid Redox Signal 2018; 28:521-536. [PMID: 28375740 PMCID: PMC5806077 DOI: 10.1089/ars.2016.6922] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidases involved in oxidant defense and signal transduction. Despite much study, the precise roles of conserved residues remain poorly defined. In this study, we carried out extensive functional and structural characterization of 10 variants of such residues in a model decameric bacterial Prx. RESULTS Three active site proximal mutations of Salmonella typhimurium AhpC, T43V, R119A, and E49Q, lowered catalytic efficiency with hydrogen peroxide by 4-5 orders of magnitude, but did not affect reactivity toward their reductant, AhpF. pKa values of the peroxidatic cysteine were also shifted up by 1-1.3 pH units for these and a decamer disruption mutant, T77I. Except for the decamer-stabilizing T77V, all mutations destabilized decamers in the reduced form. In the oxidized form, three mutants-T77V, T43A, and T43S-exhibited stabilized decamers and were more efficiently reduced by AhpF than wild-type AhpC. Crystal structures of most mutants were solved and many showed alterations in stability of the fully folded active site loop. INNOVATION This is the first study of Prx mutants to comprehensively assess the effects of mutations on catalytic activities, the active site cysteine pKa, and the protein structure and oligomeric status. CONCLUSION The Arg119 side chain must be properly situated for efficient catalysis, but for other debilitating variants, the functional defects could be explained by structural perturbations and/or associated decamer destabilization rather than direct effects. This underscores the importance of our comprehensive approach. A remarkable new finding was the preference of the reductant for decamers. Antioxid. Redox Signal. 28, 521-536.
Collapse
Affiliation(s)
- Kimberly J Nelson
- 1 Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina.,2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Arden Perkins
- 3 Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon
| | - Amanda E D Van Swearingen
- 1 Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina.,2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Steven Hartman
- 3 Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon
| | - Andrew E Brereton
- 3 Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon
| | - Derek Parsonage
- 1 Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina.,2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Freddie R Salsbury
- 2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina.,4 Department of Physics, Wake Forest University , Winston-Salem, North Carolina
| | - P Andrew Karplus
- 3 Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon
| | - Leslie B Poole
- 1 Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina.,2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
10
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Lee S, Jeong H, Lee JH, Chung JM, Kim R, Yun HJ, Won J, Jung HS. Characterisation of conformational and functional features of alkyl hydroperoxide reductase E-like protein. Biochem Biophys Res Commun 2017; 489:217-222. [PMID: 28551405 DOI: 10.1016/j.bbrc.2017.05.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022]
Abstract
Alkyl hydroperoxide reductase E (AhpE) is a member of the peroxidase family of enzymes that catalyse the reduction of peroxides, however its structural and functional roles are still unclear in details. In this study, we used the Thermococcus kodakarensis AhpE-like protein as a model to investigate structure-function relationships including the molecular properties of DNA binding activity. Multiple sequence alignment, structural comparison and biochemical analyses revealed that TkAhpE includes conserved peroxidase residues in the active site, and exhibits peroxidase activity with structure-dependent holdase chaperone function. Following electrophoretic mobility shift assays and electron microscopy analysis demonstrated distinctive binding features of TkAhpE to the DNA showing that their dimeric conformer can bind to the double-stranded DNA, but not to the single-stranded DNA, indicating its striking molecular features to double-stranded DNA-specific interactions. Based on our results, we provided that TkAhpE is a multifunctional peroxidase displaying structure-dependent molecular chaperone and DNA binding activities.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| | - Hyeongseop Jeong
- Center for Electron Microscopy Research, Korea Basic Science Institute 161, Yeongudanji-ro, Ochang-eup, Chengwon-gu, Chengju-si, Chungchengbuk-do, 28119, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Jeong Min Chung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Rumi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyung Joong Yun
- Advanced Nano Surface Research Group, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon, 34133, Republic of Korea
| | - Jonghan Won
- Advanced Nano Surface Research Group, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon, 34133, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
12
|
Bonanata J, Turell L, Antmann L, Ferrer-Sueta G, Botasini S, Méndez E, Alvarez B, Coitiño EL. The thiol of human serum albumin: Acidity, microenvironment and mechanistic insights on its oxidation to sulfenic acid. Free Radic Biol Med 2017; 108:952-962. [PMID: 28438657 DOI: 10.1016/j.freeradbiomed.2017.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 01/02/2023]
Abstract
Human serum albumin (HSA) has a single reduced cysteine residue, Cys34, whose acidity has been controversial. Three experimental approaches (pH-dependence of reactivity towards hydrogen peroxide, ultraviolet titration and infrared spectroscopy) are used to determine that the pKa value in delipidated HSA is 8.1±0.2 at 37°C and 0.1M ionic strength. Molecular dynamics simulations of HSA in the sub-microsecond timescale show that while sulfur exposure to solvent is limited and fluctuating in the thiol form, it increases in the thiolate, stabilized by a persistent hydrogen-bond (HB) network involving Tyr84 and bridging waters to Asp38 and Gln33 backbone. Insight into the mechanism of Cys34 oxidation by H2O2 is provided by ONIOM(QM:MM) modeling including quantum water molecules. The reaction proceeds through a slightly asynchronous SN2 transition state (TS) with calculated Δ‡G and Δ‡H barriers at 298K of respectively 59 and 54kJmol-1 (the latter within chemical accuracy from the experimental value). A post-TS proton transfer leads to HSA-SO- and water as products. The structured reaction site cages H2O2, which donates a strong HB to the thiolate. Loss of this HB before reaching the TS modulates Cys34 nucleophilicity and contributes to destabilize H2O2. The lack of reaction-site features required for differential stabilization of the TS (positive charges, H2O2 HB strengthening) explains the striking difference in kinetic efficiency for the same reaction in other proteins (e.g. peroxiredoxins). The structured HB network surrounding HSA-SH with sequestered waters carries an entropic penalty on the barrier height. These studies contribute to deepen the understanding of the reactivity of HSA-SH, the most abundant thiol in human plasma, and in a wider perspective, provide clues on the key aspects that modulate thiol reactivity against H2O2.
Collapse
Affiliation(s)
- Jenner Bonanata
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Lucía Turell
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Laura Antmann
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Santiago Botasini
- Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Eduardo Méndez
- Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - E Laura Coitiño
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| |
Collapse
|
13
|
The Arsenic Detoxification System in Corynebacteria: Basis and Application for Bioremediation and Redox Control. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:103-137. [PMID: 28438267 DOI: 10.1016/bs.aambs.2017.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arsenic (As) is widespread in the environment and highly toxic. It has been released by volcanic and anthropogenic activities and causes serious health problems worldwide. To survive arsenic-rich environments, soil and saprophytic microorganisms have developed molecular detoxification mechanisms to survive arsenic-rich environments, mainly by the enzymatic conversion of inorganic arsenate (AsV) to arsenite (AsIII) by arsenate reductases, which is then extruded by arsenite permeases. One of these Gram-positive bacteria, Corynebacterium glutamicum, the workhorse of biotechnological research, is also resistant to arsenic. To sanitize contaminated soils and waters, C. glutamicum strains were modified to work as arsenic "biocontainers." Two chromosomally encoded ars operons (ars1 and ars2) are responsible for As resistance. The genes within these operons encode for metalloregulatory proteins (ArsR1/R2), arsenite permeases (Acr3-1/-2), and arsenate reductases (ArsC1/C2/C1'). ArsC1/C2 arsenate reductases are coupled to the low molecular weight thiol mycothiol (MSH) and to the recently discovered mycoredoxin-1 (Mrx-1) present in most Actinobacteria. This MSH/Mrx-1 redox system protects cells against different forms of stress, including reactive oxygen species (ROS), metals, and antibiotics. ROS can modify functional sulfur cysteines by oxidizing the thiol (-SH) to a sulfenic acid (-SOH). These oxidation-sensitive protein cysteine thiols are redox regulated by the MSH/Mrx-1 couple in Corynebacterium and Mycobacterium. In summary, the molecular mechanisms involved in arsenic resistance system in C. glutamicum have paved the way for understanding the cellular response against oxidative stress in Actinobacteria.
Collapse
|
14
|
Chauvin JPR, Pratt DA. On the Reactions of Thiols, Sulfenic Acids, and Sulfinic Acids with Hydrogen Peroxide. Angew Chem Int Ed Engl 2016; 56:6255-6259. [PMID: 27933690 DOI: 10.1002/anie.201610402] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/11/2016] [Indexed: 12/22/2022]
Abstract
The reaction of thiols with H2 O2 is central to many processes essential to life, from protein folding to redox signaling. The initial products are assumed to be sulfenic acids, but their observation, and the kinetic and mechanistic characterization of their subsequent reactions, has proven challenging. The introduction of a 9-fluorotriptycene substituent enabled the use of 19 F NMR to directly monitor the reaction of a thiol with H2 O2 to yield a sulfenic acid, and its subsequent oxidation to sulfinic and sulfonic acids. The oxidations are specific base catalyzed, as revealed by the lack of isotope effects and the dependence of the kinetics on pH but not buffer concentration.
Collapse
Affiliation(s)
- Jean-Philippe R Chauvin
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
15
|
Chauvin JPR, Pratt DA. On the Reactions of Thiols, Sulfenic Acids, and Sulfinic Acids with Hydrogen Peroxide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jean-Philippe R. Chauvin
- Department of Chemistry & Biomolecular Sciences; University of Ottawa; 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry & Biomolecular Sciences; University of Ottawa; 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|