1
|
Yang S, Guo TT, Ma JB, Jia HT, Liu J, Yan SJ. Radical Cascade Reaction of Heterocyclic Ketene Aminals with Thiocyanates Promoted by Visible Light: Synthesis of Functionalized Fused 2-Iminothiazolines. J Org Chem 2024; 89:13678-13690. [PMID: 39240699 DOI: 10.1021/acs.joc.4c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Herein, a visible-light-promoted radical cascade cyclization of heterocyclic ketene aminals (HKAs) and thiocyanates was developed to access functionalized fused 2-iminothiazolines. This novel cascade reaction can be realized under only visible-light irradiation without the help of external photocatalysts, oxidants, and additives. These multicomponent cascade reactions demonstrate excellent selectivity for the Z-isomers and ensure the formation of the products only in their isomeric form. Preliminary mechanism investigations demonstrated that HKAs and thiocyanates can form electron donor-acceptor complexes for harvesting the energy of visible light to activate substrates and generate reactive radicals. This protocol can be used for synthesizing various natural-like products such as fused 2-iminothiazolines. This approach demonstrates multiple advantages such as commercially available substrates, convenient operation, environmentally friendly, mild conditions, and an efficient multicomponent reaction (2A + B).
Collapse
Affiliation(s)
- Shu Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ting-Ting Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jian-Bo Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Hui-Ting Jia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jin Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
2
|
Yu ZC, Zheng KL, Shen X, Zhou Y, Chen XL, Wang LS, Wu YD, Wu AX. I 2-Induced Umpolung: Synthesis of a 1,6-Dihydrofuro[3,2- b]pyrazolo[3,4- e][1,4]thiazine Skeleton via an Unconventional 1,4-Dithiane-2,5-diol Reaction Mode. Org Lett 2024; 26:7891-7896. [PMID: 39240619 DOI: 10.1021/acs.orglett.4c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
In this paper, novel sulfur-containing 1,6-dihydrofuro[3,2-b]pyrazolo[3,4-e][1,4]thiazine skeletons were constructed from the simple and readily available materials enaminone, 5-aminopyrazole, and 1,4-dithiane-2,5-diol. Furthermore, a novel 1,4-dithiane-2,5-diol reaction mode has been developed through a double-dipole-reversal process induced by iodine that results in the formation of six new bonds and two new rings in a one-pot reaction. This method shows good substrate compatibility, and the products can be further modified with a variety of pharmaceuticals. Additionally, this novel skeleton exhibits good fluorescence properties in solution, enabling bright and stable green fluorescence imaging in HeLa cells.
Collapse
Affiliation(s)
- Zhi-Cheng Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Kai-Lu Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Xi Shen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiang-Long Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Li-Sheng Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
3
|
Maiti S, Parui N, Halder J, Dash J. Synthesis of triazole-fused tetracyclic spirooxindole derivatives via metal-free Huisgen cycloaddition. Chem Commun (Camb) 2024; 60:10009-10012. [PMID: 39177038 DOI: 10.1039/d4cc02534b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We report an efficient, metal free method for synthesizing tetracyclic spirooxindole derivatives from N-protected isatins and propargyl bromide via Huisgen cycloaddition. This simple and practicle method provides access to spirooxindoles containing five-, six-, or seven-membered rings fused to a triazole ring.
Collapse
Affiliation(s)
- Sandip Maiti
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Nabin Parui
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Joydev Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| |
Collapse
|
4
|
Zhao KH, Qi JM, Hu XM, Li YD, Huang R, Yan SJ. Cycloaddition and Skeleton Rearrangement of Heterocyclic Ketene Aminals (HKAs) with 1-Diazonaphthalen-2(1 H)-ones for the Synthesis of Functionalized 1,2,3-Triazoles. Org Lett 2024; 26:6866-6871. [PMID: 39093330 DOI: 10.1021/acs.orglett.4c02356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We developed a protocol for the synthesis of highly functionalized 5,6-dihydro-imidazo[1,2-c][1,2,3]triazole derivatives 4-5 (DHITs) from 1-diazonaphthalen-2(1H)-one derivatives with heterocyclic ketene aminals (HKAs). This strategy involved cycloaddition and skeletal rearrangement entailing the heating of a mixture of substrates 1 with HKAs 2-3 and THF without any catalyst. As a result, a series of DHITs 4-5 were produced by cleaving one bond (1 C═N bond) and forming three bonds (1 N-N and 2 C-N bonds) in a single step. This protocol achieved the dual functionalization of diazo building blocks involving both the aromatic nitrogen alkylation reaction to form an ArC-N bond without any metal catalyst and the intermolecular cycloaddition of the N═N bond. These strategies can be used to synthesize functionalized DHITs for combinatorial and parallel syntheses via one-pot reactions without any catalyst.
Collapse
Affiliation(s)
- Ke-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jin-Mei Qi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yuan-Da Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
5
|
Zhang Z, Sun H, Zhang M, Song S, Peng M, Dai W, Wang Y, Yu F. Switchable Skeletal Rearrangement of Hexahydro-4 H-indol-4-ones: Divergent Synthesis of Dihydroxy-4 H-cyclopenta[ b]pyridin-4-ones and 8-Alkenyl Oxepane-2,6-diones. Org Lett 2024; 26:4205-4211. [PMID: 38743606 DOI: 10.1021/acs.orglett.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An unprecedented base-controlled selective skeletal rearrangement reaction of hexahydro-4H-indol-4-ones has been developed. In this protocol, highly functionalized dihydroxy-4H-cyclopenta[b]pyridin-4-ones and 8-alkenyl oxepane-2,6-diones were prepared with a broad substrate scope and high chemoselectivity in moderate to excellent yields selectively by modulating LiOH and Et3N. In addition, the newly formed 8-alkenyl oxepane-2,6-dione scaffolds could be easily further derivatized to 5-(pyrrol-2-yl)dihydrofuran-2(3H)-ones through a rare intramolecular rearrangement reaction.
Collapse
Affiliation(s)
- Zhilai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Haifeng Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Menglin Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China
| |
Collapse
|
6
|
Wang D, Tang T, Sun J, Han Y, Yan CG. Synthesis of Spiro[indoline-pyridine]-dicarboxylates and Substituted Alkylidene Oxindoles by Azomethine Ylides and MBH Carbonates of Isatins. Org Lett 2024; 26:4117-4121. [PMID: 38722200 DOI: 10.1021/acs.orglett.4c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We have developed an efficient protocol for the synthesis of spiro[indoline-pyridine]dicarboxylates and substituted alkylidene oxindoles through [3 + 3] cycloaddition and Michael addition individually by azomethine ylides and various MBH carbonates of isatins. The selective generation of cyclic products and chain products was achieved by changing the substituents at the 3-position of the oxindoles. The features of this method include convenient catalysts, mild reaction conditions, and broad substrate scopes.
Collapse
Affiliation(s)
- Daqian Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ting Tang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
7
|
Jiao Y, Zhu J, Han N, Shen R, Zhang Y, Rong L, Zhang J. Three-Component Reaction for the Synthesis of Spiro-Heterocycles from Isatins, Substituted Ureas, and Cyclic Ketones. J Org Chem 2024; 89:3441-3452. [PMID: 38377488 DOI: 10.1021/acs.joc.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
We reported an efficient three-component reaction to access new spiro heterocycles through the annulation reactions of isatins, substituted ureas, and cyclic ketones under normal laboratory conditions, which is another example of isatins being used to build spiro compounds by the ring-opening and recyclization processes. The wide range of substrates, simple operation, normal experimental conditions, and high yields make the approach of high practical value.
Collapse
Affiliation(s)
- Yang Jiao
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, PR China
| | - Junyi Zhu
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Niankun Han
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Rongcheng Shen
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Yiru Zhang
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Liangce Rong
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Jinpeng Zhang
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, PR China
| |
Collapse
|
8
|
Yuan LR, Ji SJ, Xu XP. Coupling-Spirocyclization Cascade of Tryptamine-Derived Isocyanides with Iodonium Ylides and Despirocyclization Reactions. Org Lett 2023; 25:7858-7862. [PMID: 37862138 DOI: 10.1021/acs.orglett.3c03090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
A cobalt(II)-catalyzed coupling-cyclization cascade reaction between tryptamine-derived isocyanides and iodonium ylides is investigated, which allowed for the synthesis of different types of spiroindoline compounds by variation of substituents at the N1- and C2-positions in the indole skeleton. More interesting is that the spiroindoline products could undergo despirocyclization in the presence of amines, enabling efficient construction of enamine compounds.
Collapse
Affiliation(s)
- Luo-Rong Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
9
|
Song S, Wang Y, Yu F. Construction of 1,4-Dihydropyridines: The Evolution of C4 Source. Top Curr Chem (Cham) 2023; 381:30. [PMID: 37749452 DOI: 10.1007/s41061-023-00440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
The field of cascade cyclization for the construction of 1,4-dihydropyridines (1,4-DHPs) has been continuously expanding during the last decades because of their broad-spectrum biological and synthetic importance. To date, many methods have been developed, mainly including the Hantzsch reaction, Hantzsch-like reaction and newly developed cascade cyclization, in which various synthons have been successively developed as C4 sources of 1,4-DHPs. This review presents the cascade cyclization synthesis strategy for the construction of 1,4-DHPs according to various C4 sources from carbonyl compounds, alkenyl fragments, alcohols, aliphatic amines, glycines and other C4 sources.
Collapse
Affiliation(s)
- Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, 650092, People's Republic of China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
10
|
Sun Y, Liu Z, Liu D, Zhang M, Chen L, Chai Z, Chen XB, Yu F. Synthesis of 4-Alkylated 1,4-Dihydropyridines: Fe(II)-Mediated Oxidative Cascade Cyclization Reaction of Cyclic Ethers with Enaminones. J Org Chem 2023; 88:11627-11636. [PMID: 37556793 DOI: 10.1021/acs.joc.3c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Syntheses of highly functionalized 4-alkylated 1,4-dihydropyridines (1,4-DHPs) from cyclic ethers and enaminones via iron(II)-mediated oxidative free radical cascade C(sp3)-H bond functionalization/C(sp3)-O bond cleavage/cyclization reaction have been first developed. This novel synthetic strategy offers an alternative method for the construction of 1,4-DHPs by using esters as the C4 sources, as well as expands the application of ethers in heterocycle synthesis.
Collapse
Affiliation(s)
- Yulin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhangmengjie Chai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xue-Bing Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
- College of Science, Honghe University, Mengzi 661199 Yunnan, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
11
|
Liu D, Song S, Chen L, Zhang M, Liu Z, Lu X, Huang J, Yu F. Access to thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives via a regioselective oxidative annulation reaction. Org Biomol Chem 2023; 21:2596-2602. [PMID: 36891944 DOI: 10.1039/d3ob00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A metal-free regioselective oxidative annulation reaction of readily available 2,4-pentanediones with primary amines has been described. This protocol provides a divergent strategy for the incorporation of various radical donors into 5-alkylidene 3-pyrrolin-2-one skeletons, producing a variety of thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives. Moreover, the diverse synthetic transformations of the 5-alkylidene 3-pyrrolin-2-one products were also investigated.
Collapse
Affiliation(s)
- Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Xihang Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, P. R. China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| |
Collapse
|
12
|
Hu XM, Huang R, Wen QL, Duan YG, Cao XL, Yan SJ. Hydroxyl-Directed Rh(III)-Catalyzed C-H Functionalization: Access to Benzo[ de]chromenes. Org Lett 2023; 25:1622-1627. [PMID: 36867606 DOI: 10.1021/acs.orglett.3c00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A cascade oxidative annulation reaction of heterocyclic ketene aminals (HKAs) with internal alkynes catalyzed by [Cp*RhCl2]2 and oxidized by Cu(OAc)2·H2O was developed to efficiently synthesize highly functionalized benzo[de]chromene derivatives in good to excellent yields. The reaction proceeded by the sequential cleavage of C(sp2)-H/O-H and C(sp2)-H/C(sp2)-H bonds. These multicomponent cascade reactions were highly regioselective. In addition, all of the benzo[de]chromene products exhibited intense fluorescence emission in the solid state, and they demonstrated concentration-dependent quenching in the presence of Fe3+, indicating that these compounds could be used in the recognition of Fe3+.
Collapse
Affiliation(s)
- Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ying-Gang Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xin-Ling Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
13
|
Lv KH, Chen L, Zhao KH, Yang JM, Yan SJ. Cu-Catalyzed Decarboxylative Annulation of N-Phenylglycines with Maleimides: Synthesis of 1 H-Pyrrolo[3,4- c]quinoline-1,3(2 H)-diones. J Org Chem 2023; 88:2358-2366. [PMID: 36753732 DOI: 10.1021/acs.joc.2c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A novel protocol for the construction of functionalized 1H-pyrrolo[3,4-c]quinoline-1,3(2H)-diones (PQLs, 3) from N-phenylglycines and maleimides was developed. The cascade reaction was enabled by heating a mixture of the two substrates in the presence of di-tert-butyl peroxide (DTBP) as an oxidant and anhydrous CuBr as a catalyst in chlorobenzene. Consequently, a diverse series of PQLs 3 were synthesized in moderate-to-good yields (43-73%). The synthesis of the PQLs was enabled via a one-pot cascade reaction that proceeded through subsequent oxidative decarboxylation, 1,2-addition, intramolecular cyclization, tautomerization, and aromatization reactions. This protocol can be used for the synthesis of functionalized PQLs via a one-pot oxidative decarboxylation annulation reaction rather than through a series of multistep reactions, making it suitable for both combinatorial and parallel syntheses of PQLs.
Collapse
Affiliation(s)
- Kai-Hong Lv
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Ke-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Jia-Ming Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China
| |
Collapse
|
14
|
Chen YH, Yang J, Lu ZH, Zhao KH, Xie QY, Yan SJ. Synthesis of benzo[ b][1,5]diazocin-6(5 H)-one derivatives via the Cu-catalysed oxidative cyclization of 2-aryl-1 H-indoles with 1,1-enediamines. Chem Commun (Camb) 2023; 59:1217-1220. [PMID: 36629537 DOI: 10.1039/d2cc06388c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel protocol for the synthesis of highly functionalized benzo[b][1,5]diazocin-6(5H)-one derivatives (BDCOs, 4 and 5) from 2-aryl-1H-indoles and 1,1-enediamines was developed via a complex cascade of reactions including regioselective free radical oxidation, the 1,2-addition of imine, imine-enamine tautomerization, intramolecular cyclization, and ring expansion. The cascade reaction was enabled by refluxing a mixture of two substrates in the presence of di-tert-butyl peroxide (DTBP) as an oxidant and anhydrous CuI as a catalyst in toluene under argon protection. Consequently, a series of BDCOs (4 and 5) were synthesized with high regioselectivity in good yield. This protocol can be used for the synthesis of functionalized BDCOs via a one-pot oxidative annulation reaction rather than a multi-step reaction, which is suitable for both combinatorial and parallel syntheses of BDCOs.
Collapse
Affiliation(s)
- Yi-Hua Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Jing Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Zi-Han Lu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Ke-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Qi-Ying Xie
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
15
|
Liu B, Deng Q, Zhang L, Yu A, Meng X. Switchable C2/C3 positional selectivity of thioisatins in a three-component domino reaction: combined computational and experimental studies. Org Biomol Chem 2022; 20:9639-9644. [PMID: 36411991 DOI: 10.1039/d2ob01764d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The nucleophile-induced domino reaction is a featured reactivity mode of thioisatin, but the C2/C3 positional selectivity towards a nucleophile has not been understood in-depth. In this work, a domino reaction of thioisatin with bromoacetophenone and tryptamine hydrochloride to produce a benzothiophene-fused eight-membered N-heterocycle was described, showing that the Brønsted acid-base form of the amine partner was crucial for the selectivity, because using tryptamine instead of tryptamine hydrochloride gave a different product. Control experiments and density functional calculations revealed that the domino reaction using tryptamine or tryptamine hydrochloride was triggered by a condensation reaction at the C2 or C3 position of thioisatin, respectively. A delicate balance between local electrophilicity and polarization effect may be responsible for the observed selectivity.
Collapse
Affiliation(s)
- Baolin Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science Tianjin Chengjian University, Tianjin 300384, P.R. China.
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|
16
|
Candra H, Ma GL, En SLQ, Liang ZX. Enaminone Formation Drives the Coupling of Biosynthetic Pathways to Generate Cyclic Lipopeptides. Chembiochem 2022; 23:e202200457. [PMID: 36161451 DOI: 10.1002/cbic.202200457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/17/2022] [Indexed: 02/03/2023]
Abstract
A family of novel cyclic lipopeptides named tasikamides A-H (Tsk A-H) were discovered recently in Streptomyces tasikensis P46. Aside from the unique cyclic pentapeptide scaffold shared by the tasikamides, Tsk A-C contain a hydrazone bridge that connects the cyclic pentapeptide to the lipophilic alkyl 5-hydroxylanthranilate (AHA) moiety. Here we report the production of tasikamides I-K (Tsk I-K) by a mutant strain of S. tasikensis P46 that overexpresses two pathway-specific transcription regulators. Unlike Tsk A-C, Tsk I-K feature a rare enaminone-bridge that links the cyclic peptide scaffold to the AHA moiety. Our experimental data suggest that Tsk I-K are generated by the coupling of two biosynthetic pathways via a nonenzymatic condensation reaction between an arylamine and a β-keto aldehyde-containing precursor. The results underscore the nucleophilic and electrophilic reactivity of the β-keto aldehyde moiety and its ability to promote fragment coupling reactions in live microbial cells.
Collapse
Affiliation(s)
- Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sean Lee Qiu En
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
17
|
Rao K, Chai Z, Zhou P, Liu D, Sun Y, Yu F. Transition-metal-free approach to quinolines via direct oxidative cyclocondensation reaction of N,N-dimethyl enaminones with o-aminobenzyl alcohols. Front Chem 2022; 10:1008568. [PMID: 36212061 PMCID: PMC9532769 DOI: 10.3389/fchem.2022.1008568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
A transition-metal-free method for the construction of 3-substituted or 3,4-disubstituted quinolines from readily available N,N-dimethyl enaminones and o-aminobenzyl alcohols is reported. The direct oxidative cyclocondensation reaction tolerates broad functional groups, allowing the efficient synthesis of various quinolines in moderate to excellent yields. The reaction involves a C (sp3)-O bond cleavage and a C=N bind and a C=C bond formation during the oxidative cyclization process, and the mechanism was proposed.
Collapse
|
18
|
Zhang B, Fu Z, Yang H, Liu D, Sun Y, Xu Y, Yu F, Yan S. Transition‐Metal‐Free C(
sp
2
)−H Phosphorothiolation/Cyclization of
o
‐Hydroxyarylenaminones: Access to
S
‐3‐Chromon Phosphorothioates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Zhonghui Fu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Haoqi Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Donghan Liu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yulin Sun
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yu Xu
- School of nursing Xi'An Innovation College of Yan'An University Xi'An 710100 People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Sheng‐Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| |
Collapse
|
19
|
Zhang Z, Liu Y, Wang S, Zhang C, Lin J. Efficient Synthesis of 7
H
‐Chromeno[3,2‐c]quinolin‐5‐ium Salts and Quinolin‐4‐ones through Acid‐Promoted Cascade Reaction of 3‐Formylchromones and Anilines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhong‐Wei Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Yue‐Ying Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Si‐Yu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Cong‐Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
20
|
Singh V, Lakshmi SR, Chowhan LR. Graphene Oxide Catalyzed Synthesis of Fused Chromeno Spiro Pyrrolidine Oxindoles via Tandem Decarboxylation and 1,3-Dipolar Cycloaddition. Front Chem 2022; 9:759436. [PMID: 35087791 PMCID: PMC8787336 DOI: 10.3389/fchem.2021.759436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
A short and efficient multicomponent sequence for synthesizing fused novel polyheterocyclic chromeno spiro-pyrrolidine oxindoles via 1,3-dipolar cycloaddition reaction mediated by reactive azomethine ylides catalyzed by the Graphene Oxide (GO) is reported herein. This approach was utilized for synthesizing fused polyheterocyclic spiro-pyrrolothiazole and spiro-pyrrole oxindoles with yields ranging from good to excellent. A heterogeneous GO catalyst with an ultra-low catalytic loading of 0.05 wt% could proficiently catalyze the reaction without the formation of any side products and can also be visualized by the formation of solid mass in the reaction flask. The methodology is green in nature and the products were isolated by simple filtration without the use of any chromatographic techniques.
Collapse
Affiliation(s)
| | | | - L. Raju Chowhan
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
21
|
Liu D, Lu X, Zhang Q, Zhao Y, Zhang B, Sun Y, Dai W, Xu Y, Yu F. Facile approach to multifunctionalized 5-alkylidene-3-pyrrolin-2-ones via regioselective oxidative cyclization of 2,4-pentanediones with primary amines and sodium sulfinates. Org Chem Front 2022. [DOI: 10.1039/d2qo00473a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly functionalized 5-alkylidene-3-pyrrolin-2-ones were efficiently synthesized via a four-component cascade cyclization/sulfonylation reaction between readily available 2,4-pentanediones, primary amines and sodium sulfinates under mild conditions.
Collapse
Affiliation(s)
- Donghan Liu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Xihang Lu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Qiaohe Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Yuxuan Zhao
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Biao Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Yulin Sun
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| | - Yu Xu
- School of nursing, Xi'an Innovation College of Yan'an University, Xi'an, 710100, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China
| |
Collapse
|
22
|
Suresh S, Bhimrao Patil P, Yu P, Fang C, Weng Y, Kavala V, Yao C. A Study of the Reactions of 3‐Bromopropenals with Anilines for the Synthesis of α‐Bromo Enaminones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Prakash Bhimrao Patil
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Pao‐Hsing Yu
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Chia‐Chi Fang
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Yin‐Zhi Weng
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Ching‐Fa Yao
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| |
Collapse
|
23
|
Sharma AK, Jaiswal A, Chand S, Singh KN. Domino Reaction of Isatins with
α
‐Oxoketene‐
N
,
S
‐acetals: An Efficient Synthesis of Pyrrolo[3,4‐
c
]quinoline‐1,3‐diones and 2,3‐Dihydro‐1
H
‐pyrrolo[3,4‐
c
]quinolin‐1‐ones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anup Kumar Sharma
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Anjali Jaiswal
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Shiv Chand
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Krishna Nand Singh
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
24
|
Li K, Lv Y, Lu Z, Yun X, Yan S. An environmentally benign multi-component reaction: Highly regioselective synthesis of functionalized 2-(diarylphosphoryl)-1,2-dihydro-pyridine derivatives. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
25
|
Duan YG, Hu XM, Cao XL, Lv KH, Yan SJ. Multicomponent Cascade Reaction of 3-Formylchromones: Highly Selective Synthesis of Functionalized 9-Azabicyclo[3.3.1]nonane Derivatives. Org Lett 2021; 23:6866-6871. [PMID: 34410137 DOI: 10.1021/acs.orglett.1c02431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel protocol for the preparation of functionalized 9-azabicyclo[3.3.1]nonane (ABCN) derivatives from 3-formylchromones, enaminones, and heterocyclic ketene aminals (HKAs) through an unprecedented cascade reaction has been developed by simply refluxing the mixture of the substrates 1-3. As a result, a series of ABCNs were produced through a very complex cascade reaction. This protocol can be used in the synthesis of ABCNs that are suitable for combinatorial and parallel syntheses of ABCN natural-like products in a one-pot reaction.
Collapse
Affiliation(s)
- Ying-Gang Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xin-Ling Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Kai-Hong Lv
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
26
|
Chen L, Huang R, Yun XH, Hao TH, Yan SJ. Multi-component cascade reaction of 3-formylchromones: highly selective synthesis of 4,5-dihydro-[4,5'-bipyrimidin]-6(1 H)-one derivatives. Chem Commun (Camb) 2021; 57:7657-7660. [PMID: 34254066 DOI: 10.1039/d1cc02437j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel protocol for the construction of highly functionalized bipyrimidine derivatives 4 and 5 from 3-formyl-chromones, ethyl 2-(pyridine-2-yl)acetate derivatives, and amidine hydrochlorides via an interesting and considerably complex multi-component cascade reaction was developed. The cascade reaction was manifested by refluxing a mixture of the three substrates in acetonitrile or DMF along with Cs2CO3. A series of 4,5-dihydro-[4,5'-bipyrimidin]-6(1H)-ones (DBPMOs) 4 was constructed regioselectively in suitable to excellent yields. Moreover, intermediates 4 then underwent a novel, metal- and oxidant-free cascade reaction to produce a series of [4,5'-bipyrimidin]-6(1H)-ones (BPMOs) 5. The formation of the bipyrimidine derivatives 4-5 was enabled by the formation of five bonds and the cleavage of one bond in one pot. This protocol can be used in the synthesis of functionalized bipyrimidine derivatives via a multi-component one-pot cascade reaction rather than multi-step reactions, which is suitable for both combinatorial and parallel syntheses of bipyrimidine derivatives.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Xing-Han Yun
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Tian-Hui Hao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
27
|
Zhang B, Zhou P, Xu H, Huang J, Sun Y, Liu D, Yu F. Copper(II)‐Mediated Intermolecular Radical [3+2]‐Annulation of
N
,
N
‐Dimethyl Enaminones: Direct Access to 5‐Acyl‐3‐Furancarboxaldehydes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Pan Zhou
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Hui Xu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Jiuzhong Huang
- School of Pharmacy Gannan Medical University Ganzhou 341000 People's Republic of China
| | - Yulin Sun
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Donghan Liu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| |
Collapse
|
28
|
Chen XB, Huang ST, Li J, Yang Q, Yang L, Yu F. Highly Regioselective and Chemoselective [3 + 3] Annulation of Enaminones with ortho-Fluoronitrobenzenenes: Divergent Synthesis of Aposafranones and Their N-Oxides. Org Lett 2021; 23:3032-3037. [PMID: 33792341 DOI: 10.1021/acs.orglett.1c00710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A base-promoted unprecedented strategy for the regioselective and chemoselective divergent synthesis of highly functionalized aposafranones and their N-oxides has been developed from the [3 + 3] annulation of enaminones with o-fluoronitrobenzenenes. This novel synthetic strategy offers an alternative method for the construction of aposafranones and their N-oxides are meaningful in the fields of both biology and organic synthesis. The established protocol explores the annulation scope of enaminones, and it expands the application of nitro-based cyclization.
Collapse
Affiliation(s)
- Xue-Bing Chen
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Shun-Tao Huang
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Jie Li
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Qi Yang
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Li Yang
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, People's Republic of China
| |
Collapse
|
29
|
Zhang B, Liu D, Sun Y, Zhang Y, Feng J, Yu F. Preparation of Thiazole-2-thiones through TBPB-Promoted Oxidative Cascade Cyclization of Enaminones with Elemental Sulfur. Org Lett 2021; 23:3076-3082. [DOI: 10.1021/acs.orglett.1c00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yulin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yajing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jiayi Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
30
|
Swaroop TR, Rangappa KS, Torun L. Claisen type Condensation of Methyl Ketones with Carbimidothioates: A New Gateway for the Synthesis of β‐Enaminones. ChemistrySelect 2021. [DOI: 10.1002/slct.202004295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Toreshettahally R. Swaroop
- Department of Chemistry Faculty of Arts and Sciences Yildiz Technical University Istanbul 34210 Turkey
- DOS in Organic Chemistry University of Mysore Mysuru 570 006 India
| | | | - Lokman Torun
- Department of Chemistry Faculty of Arts and Sciences Yildiz Technical University Istanbul 34210 Turkey
| |
Collapse
|
31
|
Shen J, Zhang L, Meng X. Recent advances in cyclization reactions of isatins or thioisatins via C–N or C–S bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00868d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes recent developments on cyclization reactions induced by the C–N or C–S bond cleavage of isatins or thioisatins in the last 5 years, which produce fused products instead of spiro compounds.
Collapse
Affiliation(s)
- Jinhui Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
32
|
Wang D, Xiao F, Zhang F, Huang H, Deng G. Copper‐Catalyzed
Aerobic Oxidative Ring Expansion of Isatins: A Facile Entry to
Isoquinolino‐Fused
Quinazolinones. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dahan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Feng Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
- School of Chemistry and Materials Science Hunan Agricultural University Changsha Hunan 410128 China
| | - Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
33
|
Li K, Huang R, Chen L, Lv Y, Yan SJ. Cu(II)/Iodine(III) Oxide Dimerization of Heterocyclic Ketene Aminals: Tandem TEMPO Oxidation for the Highly Selective Synthesis of Functionalized 2H-Pyrrolo[1,2-a]imidazol-7(3H)-ones. Org Lett 2020; 22:8210-8214. [DOI: 10.1021/acs.orglett.0c02689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kun Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ying Lv
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
34
|
Abstract
An important strategy for the efficient generation of diversity in molecular structures is the utilization of common starting materials in chemodivergent transformations. The most studied solutions for switching the chemoselectivity rely on the catalyst, ligand, additive, solvent, temperature, time, pressure, pH and even small modifications in the substrate. In this review article several processes have been selected such as inter- and intramolecular cyclizations, including carba-, oxa-, thia- and oxazacyclizations promoted mainly by Brønsted or Lewis acids, transition metals and organocatalysts, as well as radical reactions. Catalyst-controlled intra- and intermolecular cyclizations are mainly described to give five- and six-membered rings. Cycloaddition reactions involving (2+2), (3+2), (3+3), (4+1), (4+2), (5+2), (6+2) and (7+2) processes are useful reactions for the synthesis of cyclic systems using organocatalysts, metal catalysts and Lewis acid-controlled processes. Addition reactions mainly of carba- and heteronucleophiles to unsaturated conjugated substrates can give different adducts via metal catalyst-, Lewis acid- and solvent-dependent processes. Carbonylation reactions of amines and phenols are carried out via ligand-controlled transition metal-catalyzed multicomponent processes. Ring-opening reactions starting mainly from cyclopropanols, cyclopropenols and epoxides or aziridines are applied to the synthesis of acyclic versus cyclic products under catalyst-control mainly by Lewis acids. Chemodivergent reduction reactions are performed using dissolving metals, sodium borohydride or hydrogen transfer conditions under solvent control. Oxidation reactions include molecular oxygen under solvent control or using different dioxiranes, as well as chemodivergent palladium catalyzed cross-coupling reactions using boronic acids are applied to aromatic and allenic compounds. Other chemodivergent reactions such as alkylations and allylations under transition metal catalysis, dimerization of acetylenes, bromination of benzylic substrates, and A3-couplings are performed via catalyst- or reaction condition-dependent processes.
Collapse
Affiliation(s)
- Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow University, Leminskie Gory 1, 119992 Moscow, Russia
| | | | | |
Collapse
|
35
|
Wang Y, Hu B, Zhang Q, Zhao S, Zhao Y, Zhang B, Yu F. Selectfluor-triggered fluorination/cyclization of o-hydroxyarylenaminones: A facile access to 3-fluoro-chromones. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820923084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A fast and efficient Selectfluor-triggered fluorination/cyclization reaction of o-hydroxyarylenaminones has been successfully developed. The reaction successfully provides an expedient method for the synthesis of 3-fluoro-chromones promoted by potassium carbonate, which shows readily available starting materials and is easy to operate. In addition, a plausible mechanism of this tandem cyclization reaction was proposed where 4 H-chromen-4-one, 2-(dimethylamino)-3,3-difluorochroman-4-one, and 3,3-difluoro-2-hydroxychroman-4-one were not found to be the reactive intermediates. Moreover, these novel compounds have been obtained in moderate to good yields, and their structures have been confirmed by 1H NMR, 13C NMR, and high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Yanqin Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Biao Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Qiaohe Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Siyun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Yuxuan Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Biao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| |
Collapse
|
36
|
Zhang Q, Hu B, Zhao Y, Zhao S, Wang Y, Zhang B, Yan S, Yu F. Synthesis of N
-Sulfonyl Pyrazoles Through Cyclization Reactions of Sulfonyl Hydrazines with Enaminones Promoted by p
-TSA. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiaohe Zhang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Biao Hu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Yuxuan Zhao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Siyun Zhao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Yanqin Wang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Biao Zhang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Shengjiao Yan
- School of Chemical Science and Technology; Yunnan University; 650500 Kunming P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| |
Collapse
|
37
|
Zhang CH, Huang R, Qing X, Lin J, Yan SJ. Cascade reaction of isatins with nitro-substituted enamines: highly selective synthesis of functionalized (Z)-3-(1-(arylamino)-2-oxoarylidene)indolin-2-ones. Chem Commun (Camb) 2020; 56:3488-3491. [DOI: 10.1039/d0cc00923g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel protocol for the construction of functionalized (Z)-3-(1(-arylamino)-2-oxoarylidene)indolin-2-ones (AOIDOs) from isatins 1 with nitro-substituted enamines 2via an unprecedented cascade reaction catalyzed by sulfamic acid is developed.
Collapse
Affiliation(s)
- Cong-Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Xia Qing
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
38
|
Sorabad GS, Maddani MR. Facile, regioselective oxidative selenocyanation of N-aryl enaminones under transition-metal-free conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05845a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present selenocyanation is applied for the synthesis of selenocyanated chromones, indoles and anilines in good to excellent yields.
Collapse
Affiliation(s)
- Ganesh Shivayogappa Sorabad
- Department of Post-Graduate Studies and Research in Chemistry Mangalore University
- Mangalgangothri-574199
- India
| | | |
Collapse
|
39
|
Deng L, Cao X, Liu Y, Wan JP. In-Water Synthesis of 5-Thiolated 1,2,3-Triazoles from β-Thioenaminones by Diazo Transfer Reaction. J Org Chem 2019; 84:14179-14186. [PMID: 31608630 DOI: 10.1021/acs.joc.9b01817] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of 1,2,3-triazoles with a sulfur-based side chain has been accessed with the metal-free annulation reactions of readily available β-thiolated enaminones and tosyl hydrazine. By these reactions with water as the only medium, a broad array of 5-thiolated 1,2,3-triazoles have been synthesized with generally good to excellent yields. Except using TMEDA (N,N,N',N'-tetramethylethylenediamine) as the only base promoter, not any other catalyst or additive is required, thus providing an efficient and environmentally benign method for useful 1,2,3-triazole synthesis.
Collapse
Affiliation(s)
- Leiling Deng
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| | - Xiaoji Cao
- Research Centre of Analysis and Measurement , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| |
Collapse
|
40
|
Zhang J, Xie H, Zhu H, Zhang S, Reddy Lonka M, Zou H. Chameleon-like Behavior of the Directing Group in the Rh(III)-Catalyzed Regioselective C–H Amidation of Indole: An Experimental and Computational Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02512] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jinquan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Huajian Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Shuaizhong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Madhava Reddy Lonka
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
41
|
Luo T, Xu H, Liu Y. Aqueous Synthesis of 3,4‐Dihydropyridinones from Acryloyl Chloride and Enaminones by Domino Amidation and Intramolecular Michael Addition. ChemistrySelect 2019. [DOI: 10.1002/slct.201902898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tian Luo
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Haishun Xu
- State Key Laboratory of Subtropical SilvicultureDepartment of Traditional Chinese MedicineZhejiang A&F University Hangzhou 311300 P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
42
|
Li K, Chen L, Fan YX, Wei Y, Yan SJ. Multicomponent Tether Catalysis Synthesis of Highly Functionalized 4-(Pyridin-2-ylmethyl)-2-aminopyrroles via Cascade Reaction Is Accompanied by Decarboxylation. J Org Chem 2019; 84:11971-11982. [DOI: 10.1021/acs.joc.9b01814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yun-Xiang Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yao Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
43
|
Chen XB, Xiong SL, Xie ZX, Wang YC, Liu W. Three-Component One-Pot Synthesis of Highly Functionalized Bis-Indole Derivatives. ACS OMEGA 2019; 4:11832-11837. [PMID: 31460292 PMCID: PMC6682060 DOI: 10.1021/acsomega.9b01159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/25/2019] [Indexed: 05/10/2023]
Abstract
In this study, we detail the development of a concise and efficient three-component protocol for the regioselective synthesis of highly functionalized bis-indoles through a one-pot, two-step sequential process starting from enaminones 1, indoles 2, and acenaphthylene-1,2-dione 3 that is catalyzed by piperidine and p-methyl benzenesulfonic acid. This protocol has several advantages including simplicity of experimental operation, high efficiency of bond formation, ready availability and low cost of starting materials, environmentally benign conditions, and target molecular diversity.
Collapse
Affiliation(s)
- Xue-Bing Chen
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| | - Sheng-Li Xiong
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| | - Zhi-Xu Xie
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| | - Yong-Chao Wang
- School
of Vocational and Technical Education, Yunnan
Normal University, Kunming 650092, P. R. China
| | - Wei Liu
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| |
Collapse
|
44
|
Luo Q, Huang R, Xiao Q, Kong LB, Lin J, Yan SJ. Cascade Reaction of 1,1-Enediamines with 2-Benzylidene-1 H-indene-1,3(2 H)-diones: Selective Synthesis of Indenodihydropyridine and Indenopyridine Compounds. ACS OMEGA 2019; 4:6637-6646. [PMID: 31459789 PMCID: PMC6648820 DOI: 10.1021/acsomega.9b00407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/04/2019] [Indexed: 06/10/2023]
Abstract
A concise and environmentally friendly route for the synthesis of diverse indenodihydropyridines (3) via a cascade reaction of 1,1-eneamines (1) with benzylidene-1H-indene-1,3(2H)-diones (BIDs) (2) in ethanol media was developed. The targeted compounds were efficiently obtained by only filtration without any further post-treatment. In the one-step cascade reaction, C-C and C-N bonds were constructed. In addition, when 1,4-dioxane was used as a solvent and the mixture of 1,1-eneamines (1) was refluxed with benzylidene-1H-indene-1,3(2H)-diones (BIDs) (2) for about 12 h, indenopyridine compounds (4) were produced. Two kinds of indenopyridine derivatives 3-4 resulted from alternative solvents and temperatures. The reaction had the following features: mild temperature, atom economy, high yields, and potential biological activity of the product.
Collapse
Affiliation(s)
| | | | | | | | - Jun Lin
- E-mail: . Tel/fax: +86 87165031633 (J.L.)
| | | |
Collapse
|
45
|
Kong L, Yan S, Yao Y, Xiao Q, Lin J. Cascade Reactions Utilizing the Nucleophilic Properties of 1,1‐Enediamines for the Regioselective Synthesis of 4‐Aryl‐2‐aminopyridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201900026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ling‐Bin Kong
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| | - Sheng‐Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| | - Yuan Yao
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| | - Qiang Xiao
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry Education, School of Chemical Science and TechnologyYunnan University Kunming 650091, P. R. China
| |
Collapse
|
46
|
Sultana S, Shim JJ, Kim SH, Lee YR. Silver(i)/base-promoted propargyl alcohol-controlled regio- or stereoselective synthesis of furan-3-carboxamides and (Z)-enaminones. Org Biomol Chem 2019; 16:6749-6759. [PMID: 30187059 DOI: 10.1039/c8ob01791c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel and facile regioselective synthesis of furan-3-carboxamides by a silver(i)/base-promoted reaction of propargyl alcohol with 3-oxo amides has been demonstrated. This one-pot protocol provides a rapid synthetic approach to diverse trisubstituted furan-3-carboxamides via cascade nucleophilic addition, intramolecular cyclization, elimination, and isomerization reactions. Employing a substituted propargyl alcohol, (Z)-enaminones have been obtained with high stereoselectivities by a Ag2CO3-promoted reaction starting from 3-oxo amides via C-N bond cleavage.
Collapse
Affiliation(s)
- Sabera Sultana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | | | | |
Collapse
|
47
|
Zi QX, Yan SJ, Yang CL, Li K, Lin J. Three-Component Cascade Reaction of 1,1-Enediamines, N, N-Dimethylformamide Dimethyl Acetal, and 1,3-Dicarbonyl Compounds: Selective Synthesis of Diverse 2-Aminopyridine Derivatives. ACS OMEGA 2019; 4:2863-2873. [PMID: 31459516 PMCID: PMC6648487 DOI: 10.1021/acsomega.8b03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/25/2019] [Indexed: 06/10/2023]
Abstract
A novel approach has been developed for the synthesis of three kinds of highly functionalized 2-aminopyridine derivatives (APDs) through a three-component reaction of 1,1-enediamines (EDAMs) 1, N,N-dimethylformamide dimethyl acetal (DMF-DMA) 2, and 1,3-dicarbonyl compounds 3-5 via a base-promoted cascade reaction, producing the desired products in good to excellent yields. This method represents a route to obtain a novel class of APDs in a concise, rapid, and practical manner. This approach is particularly attractive because of the following features: low cost, mild temperature, atom economy, high yields, and potential biological activity of the product.
Collapse
Affiliation(s)
| | | | | | | | - Jun Lin
- E-mail: Phone/Fax: +86 87165031633 (J. L.)
| |
Collapse
|
48
|
Guo Y, Wang G, Wei L, Wan JP. Domino C-H Sulfonylation and Pyrazole Annulation for Fully Substituted Pyrazole Synthesis in Water Using Hydrophilic Enaminones. J Org Chem 2019; 84:2984-2990. [PMID: 30714367 DOI: 10.1021/acs.joc.8b02897] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cascade reactions between NH2-functionalized enaminones and sulfonyl hydrazines have been developed for the synthesis of fully substituted pyrazoles. By making use of the hydrophilic primary amino group in the enaminones, the reactions proceed well in the medium of pure water in the presence of molecular iodine, TBHP, and NaHCO3 via cascade C-H sulfonylation and pyrazole annulation. The cleavage of the C-N bond in enaminones is confirmed by the experiment using 15 N-labeled enaminone.
Collapse
Affiliation(s)
- Yanhui Guo
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| | - Guodong Wang
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| | - Li Wei
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| |
Collapse
|
49
|
Sorabad GS, Maddani MR. Metal-free, green and efficient oxidative α halogenation of enaminones by halo acid and DMSO. NEW J CHEM 2019. [DOI: 10.1039/c8nj06412a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal free oxidative halogenation of N-aryl enaminones has been demonstrated using a DMSO–halo acid combination under mild reaction conditions. The present method is a straightforward approach and is also applied for the synthesis of chromenone derivatives in excellent yields.
Collapse
Affiliation(s)
- Ganesh Shivayogappa Sorabad
- Department of Post-Graduate Studies and Research in Chemistry
- Mangalore University
- Mangalagangothri-574199
- India
| | | |
Collapse
|
50
|
Sun K, Chen XL, Zhang YL, Li K, Huang XQ, Peng YY, Qu LB, Yu B. Metal-free sulfonyl radical-initiated cascade cyclization to access sulfonated indolo[1,2-a]quinolines. Chem Commun (Camb) 2019; 55:12615-12618. [DOI: 10.1039/c9cc06924k] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal-free cascade reaction was developed for the synthesis of indolo[1,2-a]quinoline derivatives from arylsulfonyl hydrazides and 1-(2-(arylethynyl)phenyl)indoles in the presence of TBAI/TBHP.
Collapse
Affiliation(s)
- Kai Sun
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Lan Chen
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yin-Li Zhang
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Kai Li
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xian-Qiang Huang
- School of Chemistry & Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Yu-Yu Peng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha 410114
- China
| | - Ling-Bo Qu
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bing Yu
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|